State-of-the-art option pricing by simulation PRMIA Munich Chapter Meeting

Christian Bender

TU Braunschweig

June 2008

- Examples of Bermudan options
- 2 The relation to optimal stopping
- Output Section 2 Contract Sec
- Opper price bounds by simulation

Examples of Bermudan options

- The relation to optimal stopping
- Output Section 2 Contract Sec
- Opper price bounds by simulation

Example 1: Bermuda Swaption

Swap: At some fixed time points {T₀,..., T_I}, say quarterly, there are the following payments
 Bank 1 pays coupons according to a fixed rate θ;
 Bank 2 pays coupons according to the Euribor.

Example 1: Bermuda Swaption

Swap: At some fixed time points {T₀,..., T_I}, say quarterly, there are the following payments
 Bank 1 pays coupons according to a fixed rate θ;
 Bank 2 pays coupons according to the Euribor.

• Bermudan Swaption: Bank 2 has the right to cancel the contract at one of the payment dates of its choice.

• A cancelable snowball swap is an exotic swap: the Euribor is swaped at payment dates (e.g. semi-annually) against a complexly structured coupon, the snowball coupon.

The swap can be canceled (terminated) at any payment date to be chosen by the payer of the snowball coupon.

Example 2: Cancelable snowball swap

Notation:

- Payment dates $\mathcal{E} = \{T_0, \dots, T_{\mathcal{I}}\}$
- L_i(t): The interest rate at time t for a loan over the period between T_i and T_{i+1} where t ≤ T_i.

Example 2: Cancelable snowball swap

Notation:

- Payment dates $\mathcal{E} = \{T_0, \dots, T_{\mathcal{I}}\}$
- L_i(t): The interest rate at time t for a loan over the period between T_i and T_{i+1} where t ≤ T_i.

Specification of the coupons:

• Bank A pays the spot-Libor in arrears, i.e. at time T_i :

Nominal
$$\times L_{i-1}(T_{i-1})(T_i - T_{i-1}).$$

• Bank B pays at time T_i the snowball coupon:

Nominal $\times K_{i-1}(T_i - T_{i-1})$

Example 2: Cancelable snowball swap

Notation:

- Payment dates $\mathcal{E} = \{T_0, \dots, T_{\mathcal{I}}\}$
- L_i(t): The interest rate at time t for a loan over the period between T_i and T_{i+1} where t ≤ T_i.

Specification of the coupons:

• Bank A pays the spot-Libor in arrears, i.e. at time T_i :

Nominal
$$\times L_{i-1}(T_{i-1})(T_i - T_{i-1}).$$

• Bank B pays at time T_i the snowball coupon:

Nominal
$$\times K_{i-1}(T_i - T_{i-1})$$

where

$$K_i := I, \quad i = 0, 1,$$

 $K_i := (K_{i-1} + A_i - L_i(T_i))^+ \quad i = 2, \dots, \mathcal{I} - 1.$

and I, A_i are specified in the contract.

Problem: How to compute the fair price of such Bermudan products numerically?

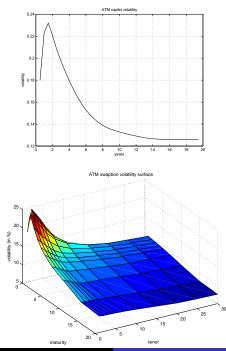
- First Step: Choice of the model.
- Second Step: Calibration of the model.
- Third Step: Choice of an appropriate pricing algorithm.

Problem: How to compute the fair price of such Bermudan products numerically?

- First Step: Choice of the model.
- Second Step: Calibration of the model.
- Third Step: Choice of an appropriate pricing algorithm.

One- or two-factor short rate models, e.g. the Hull-White model:

- Model type: determined by a SDE driven by a one- or two-dimensional Brownian motion.
- Advantage: Bermudan products can be priced by straightforward implementation of trinomial trees.
- Disadvantage: Model cannot capture the term structure of caplet and swaption volatilities.



Christian Bender Option p

Option pricing by simulation

LIBOR market model

- Model type: determined by a high-dimensional system of SDEs driven by a possibly high-dimensional Brownian motion.
- Advantage: Reasonable fit to caplet and swaption prices is possible.
- Disadvantage: Pricing by tree methods is impossible due to the curse of dimensionality.

Choice between

- a (typically low-dimensional) model, in which Bermudan products can be priced with high accuracy, but which poorly fits the observed data.
- a (typically high-dimensional) model, which reasonably fits the observed data, but requires more sophisticated pricing tools.

- Examples of Bermudan options
- 2 The relation to optimal stopping
- Output Section 2 Contract Sec
- Opper price bounds by simulation

Assumption: Arbitrage-free market of tradable securities, which is already calibrated to liquidly traded products.

 \rightarrow We have fixed a pricing measure Q connected to some discount factor \mathcal{N} .

Assumption: Arbitrage-free market of tradable securities, which is already calibrated to liquidly traded products.

 \rightarrow We have fixed a pricing measure Q connected to some discount factor \mathcal{N} .

Definition

A Bermudan option consists of a finite set of time points $\mathcal{E} = \{T_0, \dots, T_{\mathcal{I}}\}$ and a cashflow $\mathcal{Z}(T_i)$.

 Interpretation: The holder of the Bermudan option is entitled to choose one time point out of the set *E*, at which she exercises the cash-flow *Z*, i.e. she receives e.g. *Z*(*T_i*).

Connection to optimal stopping

- Consider the discounted cashflow $Z(i) = \mathcal{Z}(T_i)/\mathcal{N}(T_i)$.
- Assume w.l.o.g. $\mathcal{N}(0) = 1$.
- The fair price of the Bermudan product is determined by the optimal choice to exercise the cash-flow

$$\sup_{\tau\in\mathcal{T}_{0,\mathcal{I}}}E^Q[Z(\tau)]$$

where $\mathcal{T}_{0,\mathcal{I}}$ is the set of $\{0,\ldots,\mathcal{I}\}\text{-valued non-anticipating random times}$

• From now on: All (conditional) expectations are taken under *Q*.

Backward dynamic programming

• Idea: Find an optimal exercise time $\tau^*(i)$ provided the option has not been exercised before time *i*.

Backward dynamic programming

- Idea: Find an optimal exercise time $\tau^*(i)$ provided the option has not been exercised before time *i*.
- At terminal time:

$$\tau^*(\mathcal{I}) = \mathcal{I}$$

(because no other time points are left).

At time *i*: Exercise immediately, if and only Z(i) is at least as large as what you expect to get by waiting until time i + 1 and proceeding optimally from that time on:

$$au^*(i) = \left\{ egin{array}{cc} i, & Z(i) \geq E[Z(au^*(i+1))|\mathcal{F}_i] \ au^*(i+1), & ext{otherwise} \end{array}
ight.$$

Backward dynamic programming

- Idea: Find an optimal exercise time $\tau^*(i)$ provided the option has not been exercised before time *i*.
- At terminal time:

$$\tau^*(\mathcal{I}) = \mathcal{I}$$

(because no other time points are left).

At time *i*: Exercise immediately, if and only Z(i) is at least as large as what you expect to get by waiting until time i + 1 and proceeding optimally from that time on:

$$au^*(i) = \left\{ egin{array}{cc} i, & Z(i) \geq E[Z(au^*(i+1))|\mathcal{F}_i] \ au^*(i+1), & ext{otherwise} \end{array}
ight.$$

• Then $\tau^*(0)$ is an optimal exercise time and $E[Z(\tau^*(0))]$ is the fair price of the Bermudan option.

General idea of Monte-Carlo simulation:

- Starting from today's prices of the underlying market, simulate future scenarios of the market (under the pricing measure *Q*);
- Approximate expectations under *Q* by averaging over the simulated scenarios.

General idea of Monte-Carlo simulation:

- Starting from today's prices of the underlying market, simulate future scenarios of the market (under the pricing measure *Q*);
- Approximate expectations under *Q* by averaging over the simulated scenarios.

Problem:

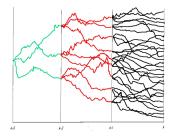
- Simulation is genuinely directed forwardly in time;
- The dynamic program is directed backwardly in time.

Why Monte-Carlo is ill-suited (II)

• Problem: In each step of the backward dynamic program an expectation must be calculated which depends on the exercise time from the previous time step.

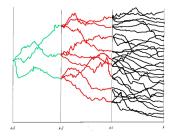
Why Monte-Carlo is ill-suited (II)

- Problem: In each step of the backward dynamic program an expectation must be calculated which depends on the exercise time from the previous time step.
- Naive approach: Average over simulated paths (plain Monte Carlo) as suggested by the Law of Large Numbers.



Why Monte-Carlo is ill-suited (II)

- Problem: In each step of the backward dynamic program an expectation must be calculated which depends on the exercise time from the previous time step.
- Naive approach: Average over simulated paths (plain Monte Carlo) as suggested by the Law of Large Numbers.



Infeasible: Computational cost explodes rapidly with the number of exercise dates.

- Examples of Bermudan options
- 2 The relation to optimal stopping
- Output Section 2 Contract Sec
- Opper price bounds by simulation

Lower bounds by simulation: General ideas

• Trivial: Any sub-optimal exercise time σ induces a lower bound by

$$E[Z(\sigma)].$$

• If a simulation mechanism is available, simulate L independent copies of $Z(\sigma)$ and calculate the expectation by averaging.

 \rightarrow estimator which is biased low.

• Many algorithms have been proposed to find a 'good' approximative strategy σ .

Basic idea: approximate all (conditional) expectations in the backward dynamic program by least-squares Monte-Carlo.

- Markovian setting: \mathbb{R}^{D} -valued Markov process X(i) such that Z(i) = h(i, X(i)).
- Then: $E[f(X(j))|\mathcal{F}_i] = E[f(X(j))|X(i)] = u(X(i)).$
- Aim: Estimate the function *u* as a linear combination of basis functions with the coefficients estimated by simulation.

Pseudo-Algorithm:

Choose a vector of basis functions

$$\psi(i,x) = (\psi_1(i,x),\ldots,\psi_K(i,x)); x \in \mathbb{R}^D;$$

Simulate *L* independent copies $X_{\lambda}(i)$, $\lambda = 1, ..., L$ of *X*;

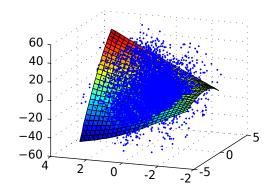
Solve the least squares problem

$$\begin{aligned} \mathsf{a}(i,j;f) &= \arg\min_{\mathbf{a}\in\mathbb{R}^{K}}\frac{1}{L}\sum_{\lambda=1}^{L}\left(f(X_{\lambda}(j)) - \psi(i,X_{\lambda}(i))\mathbf{a}\right)^{2} \\ &\approx \arg\min_{\mathbf{a}\in\mathbb{R}^{K}}E\left[\left(f(X(j)) - \psi(i,X(i))\mathbf{a}\right)^{2}\right]; \end{aligned}$$

• Define, as estimator for $E[f(X(j))|\mathcal{F}_i] = E[f(X(j))|X(i)]$,

$$\hat{\mathcal{E}}[f(X(j))|X(i)] = \psi(i,X(i))a(i,j;f).$$

Conditional expectations via least squares Monte Carlo



Numerical results for Bermudan swaption

- Exercise dates annually over 10 years;
- Setting: 3M-LIBOR market model;
- Model driven by *D*-dim. Brownian motion;
- Basis: low-order monomials on the cashflow; approximations of the price for European swaptions.

	D	LS-Lower Bound	K&S Price
		Y_0	Interval
ITM	1	$1108.8{\pm}1.41$	[1108.9±2.4, 1109.4±0.7]
	2	$1101.6 {\pm} 1.53$	[1100.5±2.4, 1103.7±0.7]
	10	1096.4±1.61	[1096.9±2.1, 1098.1±0.6]
ОТМ	1	121.0 ± 0.71	[121.0±0.6, 121.3±0.4]
	2	$113.3 {\pm} 0.75$	$[113.8 \pm 0.5, 114.9 \pm 0.4]$
	10	$100.1 {\pm} 0.83$	[100.7±0.4, 101.5±0.3]

Numerical results for the cancelable snowball swap

- Exercise dates semiannually over 10 years;
- Setting: 6M-LIBOR market model;
- Model driven by 19-dim. Brownian motion;
- Basis: low order monomials on explanatory variables, here: snowball coupon, spot LIBOR rate, long swap rate; cp. Piterbarg.

Numerical results for the cancelable snowball swap

- Exercise dates semiannually over 10 years;
- Setting: 6M-LIBOR market model;
- Model driven by 19-dim. Brownian motion;
- Basis: low order monomials on explanatory variables, here: snowball coupon, spot LIBOR rate, long swap rate; cp. Piterbarg.

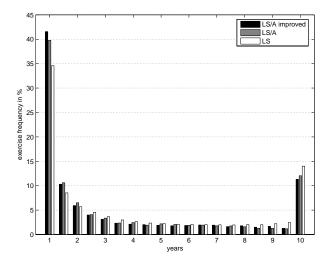
LS-lower bound: 77.54 (bp) \pm 0.36 Reference price interval: [106.47 \pm 0.84, 110.22 \pm 0.55] (B./Kolodko/Schoenmakers)

Problems:

- LS-lower price bound is significantly off;
- Not clear, how to tailor the basis to the problem.

Numerical results for the cancelable snowball swap

Exercise profile:



Advantages

- Easy to implement and quite fast;
- Estimator is biased low (since it is based on sub-optimal policies);
- Convergence to the Bermudan price, when the basis exhausts a complete system and the simulated paths tend to infinity (see Clement, Lamberton & Protter; Egloff);
- Simple basis functions (low order polynomials) and moderate sample size often yield very good lower bounds.

Disadvantages

- The interplay of several error sources is difficult to handle:
 - Choice of basis
 - Simulation error
 - Error propagation backwards through time.
- Theoretical convergence may be slow in specific examples:

Exponential growth in the samples when the number of basis functions increases (Glasserman & Yu)

• Simple choice of basis may yield poor lower bounds in some difficult situations.

Disadvantages

- The interplay of several error sources is difficult to handle:
 - Choice of basis
 - Simulation error
 - Error propagation backwards through time.
- Theoretical convergence may be slow in specific examples:

Exponential growth in the samples when the number of basis functions increases (Glasserman & Yu)

• Simple choice of basis may yield poor lower bounds in some difficult situations.

Questions:

- How to improve upon the LS-lower bounds?
- How to assess the quality of the lower bound?

Policy improvement (B./Kolodko/Schoenmakers)

- Denote by (τ(0),...,τ(I)) the exercise times constructed by the LS-algorithm.
- Basic idea: Compare
 - the reward from immediate exercise at time i;
 - ② the highest expected reward by choosing one of the remaining LS-exercise times $\tau(j)$, j ≥ i + 1.

Hence,

$$\widetilde{ au}(i):=\inf\left\{j:\;i\leq j\leq \mathcal{I},\; Z(j)\geq \max_{j+1\leq p\leq \mathcal{I}}E\left[Z(au(p))|\mathcal{F}_j
ight]
ight\}.$$

Policy improvement (B./Kolodko/Schoenmakers)

- Denote by (τ(0),...,τ(I)) the exercise times constructed by the LS-algorithm.
- Basic idea: Compare
 - the reward from immediate exercise at time i;
 - ② the highest expected reward by choosing one of the remaining LS-exercise times *τ*(*j*), *j* ≥ *i* + 1.

Hence,

$$\widetilde{ au}(i) := \inf \left\{ j: \ i \leq j \leq \mathcal{I}, \ Z(j) \geq \max_{j+1 \leq p \leq \mathcal{I}} E\left[Z(au(p))|\mathcal{F}_j\right]
ight\}.$$

• Result: The lower bound based on $\tilde{\tau}(0)$ is always better than the LS-lower bound.

Policy improvement: Algorithm

Markovian setting: Z(i) = h(i, X(i))

- Suppose $(\tau(0), \ldots, \tau(\mathcal{I}))$ are constructed by the LS-algorithm.
- **2** Simulate *L* outer samples $_{\lambda}X$ of *X*
- **3** Given *i* and $_{\lambda}X$, estimate e.g.

 $E[Z(\tau(p))|\mathcal{F}_j] = E[h(\tau(p), X(\tau(p; X)))|X(i)]$

by plain Monte Carlo, averaging over inner samples which are sampled according to the conditional law given $X(i) = {}_{\lambda}X(i)$.

• Find L approximations of $\tilde{\tau}(i)$ by approximating the exercise criterion

$$ilde{ au}(i) = i \ \Leftrightarrow \ Z(i) \geq \max_{i+1 \leq p \leq \mathcal{I}} E\left[Z(au(p)) | \mathcal{F}_i
ight]$$

accordingly.

Solution Average over the outer samples to approximate $E[Z(\tilde{\tau}(0))]$.

Advantage:

• Always yields tighter lower bounds than the LS-algorithm, see the snowball example.

Disadvantages:

- One layer of nested simulation is required.
- Application of the plain algorithm to serious problems (e.g. the snowball example) may require long computing times (several hours). However, efficient variance reduction techniques are available.

- Examples of Bermudan options
- 2 The relation to optimal stopping
- Output Section 2 Contract Sec
- Opper price bounds by simulation

Dual upper bounds (Rogers; Haugh and Kogan)

Rogers and Haugh & Kogan suggest:

- Start with some martingale M (fair game) such that M(0) = 0.
- Define

$$Y_{up}(i; M) = M(i) + E[\max_{i \leq j \leq \mathcal{I}} (Z(j) - M(j)) |\mathcal{F}_i].$$

Then Y_{up}(0; M) is an upper bound for the Bermudan price.
Simulate the upper bound Y_{up}(0; M) by plain Monte Carlo

$$Y_{up}(0; M) \approx \frac{1}{L} \sum_{\lambda=1}^{L} \max_{0 \le j \le \mathcal{I}} ({}_{\lambda}Z(j) - {}_{\lambda}M(j))$$

to get an estimator which is biased high.

Question: How to choose the martingale?

Upper bounds from lower bounds

• Given exercise times $au = (au(0), \dots, au(\mathcal{I}))$ define

$$Y_{low}(i;\tau) = E[Z(\tau(i))|\mathcal{F}_i].$$

(Expected gain when employing strategy τ)

• Consider the martingale part from the Doob-decomposition,

$$M(i+1;\tau) - M(i;\tau) = Y_{low}(i+1;\tau) - E[Y_{low}(i+1;\tau)|\mathcal{F}_i].$$

Upper bounds from lower bounds

• Given exercise times $au = (au(0), \dots, au(\mathcal{I}))$ define

$$Y_{low}(i;\tau) = E[Z(\tau(i))|\mathcal{F}_i].$$

(Expected gain when employing strategy τ)

• Consider the martingale part from the Doob-decomposition,

$$M(i+1;\tau) - M(i;\tau) = Y_{low}(i+1;\tau) - E[Y_{low}(i+1;\tau)|\mathcal{F}_i].$$

• The duality gap of the strategy τ is

$$\Delta \tau = Y_{up}(0; M(\cdot, \tau)) - Y_{low}(0; \tau).$$

• For the optimal strategy τ^* we have (Rogers; Haugh & Kogan)

$$\Delta \tau^* = 0.$$

• Procedure requires to estimate

$$M(i+1;\tau) - M(i;\tau) = Y_{low}(i+1;\tau) - E[Y_{low}(i+1;\tau)|\mathcal{F}_i].$$

- Estimating the conditional expectation on the right hand side typically destroys the martingale property of the estimator *M*(·; τ).
- Hence, $Y_{up}(0; \hat{M}(\cdot; \tau))$ may fail to be an upper bound.

The Andersen-Broadie algorithm

Markovian setting: Z(i) = h(i, X(i))

- Compute the exercise times τ(i, X) by the Longstaff-Schwartz algorithm;
- **2** Simulate *L* outer samples $_{\lambda}X$ of *X*
- **3** Given *i* and $_{\lambda}X$, estimate e.g.

 $E[Y_{low}(i+1;\tau)|\mathcal{F}_{i}] = E[h(\tau(i+1), X(\tau(i+1;X)))|X(i)]$

by plain Monte Carlo, averaging over inner samples which are sampled according to the conditional law given $X(i) = {}_{\lambda}X(i)$.

• This yields L samples $_{\lambda}\hat{M}(i;\tau)$ estimating $M(i;\tau)$

O Define

$$Y^{\mathcal{AB}}_{up} = rac{1}{L} \sum_{\lambda=1}^{L} \max_{0 \leq j \leq \mathcal{I}} (\ _{\lambda} Z(j) - \ _{\lambda} \hat{M}(j; au)).$$

Discussion of the Andersen-Broadie algorithm

Advantages:

• Y_{up}^{AB} is biased high, (although $_{\lambda}\hat{M}(i;\tau)$ fail to be martingales in general).

Reason: Use of plain Monte Carlo and convexity of the max-operator.

Converges to Y_{up}(0; M(·; τ)) as the number of inner and outer simulations increases.

Disadvantage:

• One layer of nested simulation is required.

Note: The reference upper bounds in the numerical examples were computed this way.

Fast upper bounds (Belomestny/B./Schoenmakers)

Aim: Find an estimator \hat{M} for the martingale

$$M(i+1;\tau) - M(i;\tau) = Y_{low}(i+1;\tau) - E[Y_{low}(i+1;\tau)|\mathcal{F}_i].$$

such that

- \hat{M} is a martingale;
- No need for nested simulations;

Fast upper bounds (Belomestny/B./Schoenmakers)

Aim: Find an estimator \hat{M} for the martingale

$$M(i+1;\tau) - M(i;\tau) = Y_{low}(i+1;\tau) - E[Y_{low}(i+1;\tau)|\mathcal{F}_i].$$

such that

- \hat{M} is a martingale;
- No need for nested simulations;

Framework: $Z(i) = h(T_i, X(T_i))$, where

 $dX(t) = a(t, X(t))dt + b(t, X(t))dW(t), \quad X_0 = x,$

- W is a \mathcal{D} -dim. Brownian motion on [0, T];
- the coefficient functions *a*, *b* are Lipschitz in space and 1/2-Hölder in time;
- X is D-dimensional.

Idea:

• Thanks to the martingale representation theorem there is an adapted process *U* such that

$$M(i+1;\tau)-M(i;\tau)=\int_{T_i}^{T_{i+1}}U(s)dW(s).$$

• Given a partition $\pi \supset \mathcal{E}$ of [0, T], find a non-anticipating estimator U^{π} for U, and consider the martingale

$$M^{\pi}(i) = \sum_{t_j \in \pi; \ t_j < T_i} U^{\pi}(t_j) (W(t_{j+1}) - W(t_j)).$$

Algorithm

- Compute the exercise family τ(i, X) utilizing the Longstaff-Schwartz algorithm;
- Estimate the martingale integrand

$$E\left[\frac{W_d(t_{j+1})-W_d(t_j)}{t_{j+1}-t_j}h(\tau(i),X(\tau(i)))\middle|X(t_j)\right];\quad T_{i-1}\leq t_j< T_i.$$

via least-squares Monte-Carlo;

- Use this expression as estimator $\hat{U}_d^{\pi}(t_j, X)$ for the martingale integrand and the associated estimator $\hat{M}^{\pi}(i, X)$ for the martingale $M(i; \hat{\tau})$.
- Simulate *M* new copies $_{\mu}X$ of *X* and estimate the Bermudan price by

$$\hat{Y}_{up}(\hat{M}^{\pi}) = rac{1}{M} \sum_{\mu=1}^{M} \max_{0 \leq j \leq \mathcal{I}} (h(j,\ _{\mu}X_j) - \hat{M}^{\pi}(j,\ _{\mu}X)).$$

Numerical results for the Bermudan swaption

- 'Fast' upper bounds calculated with roughly 100 times less simulated paths than Andersen/Broadie upper bounds.
- Basis for upper bounds: 3 basis functions derived from approximations of the delta for European swaptions.

	D	Lower Bound	Upper Bound	K&S Price
		Y_0	$Y_{up}(\widehat{M}^{\pi})$	Interval
ITM	1	$1108.8 {\pm} 1.41$	$1109.6 {\pm} 0.86$	$[1108.9\pm2.4, 1109.4\pm0.7]$
	2	$1101.6{\pm}1.53$	$1104.7{\pm}0.91$	[1100.5±2.4, 1103.7±0.7]
	10	$1096.4{\pm}1.61$	1103.2±0.98	[1096.9±2.1, 1098.1±0.6]
ОТМ	1	121.0±0.71	122.4±0.87	[121.0±0.6, 121.3±0.4]
	2	$113.3 {\pm} 0.75$	$115.2{\pm}0.89$	$[113.8 \pm 0.5, 114.9 \pm 0.4]$
	10	$100.1 {\pm} 0.83$	$103.4{\pm}0.96$	[100.7±0.4, 101.5±0.3]

Advantages

- Fast and easy to implement;
- Converges to Y_{up}(0; M(·; τ)), when the mesh of the time grid decreases, the basis exhausts a complete system and the simulated paths tend to infinity.

Disadvantages

- The interplay of several error sources is difficult to handle;
- Quality of the upper bounds depends on the choice of basis more heavily than for the lower bounds.

References

- Glasserman, P. (2004). Monte Carlo methods in financial engineering. Springer.
 Excellent monograph on MC methods in finance.
- Hertz, D.B. (1964) Risk analysis in capital investment. *Harvard Business Review*.

MC in finance.

• Boyle, P. (1977). Options: a Monte Carlo approach. J. Financial Economics

MC pricing without early-exercise features.

- Carriere, J. (1996) Valuation of early-exercise price of options using simulation and nonparametric regression. *Insurance: Math. and Economics.*
- Grau, A. (2008) Applications of least-squares regressions to pricing and hedging of financial derivatives.
 Quadratic hedging by least squares MC.

- Andersen, Broadie (2004). A primal-dual simulation algorithm for pricing multidimensional American options. *Management Sciences*.
- Belomestny, Bender, Schoenmakers (2008) True upper bounds for Bermudan products via non-nested Monte Carlo, *Math. Finance*.
- Bender, Kolodko, Schoenmakers (2006) Iterating cancellable snowballs and related exotics. *Risk*.
- Clément, Lamberton, Protter (2002). An analysis of a least squares regression algorithm for American option pricing. *Finance Stoch.*
- Egloff (2005) Monte Carlo algorithms for optimal stopping and statistical learning. *Ann. Appl. Probab.*
- Glasserman, Yu (2004) Number of paths vs. number of basis functions in American Option pricing. Ann. Appl. Probab.
- Haugh, Kogan (2004). Pricing American options: a duality approach. *Operations Research*.
- Kolodko, Schoenmakers (2006). Iterative construction of the optimal Bermudan stopping time. *Finance Stoch.*
- Longstaff, Schwartz (2001). Valuing American options by simulation: a simple least-squares approach. *Rev. Financial Stud.*
- Piterbarg (2004). Pricing and hedging callable Libor exotics in forward Libor models. *Journal of Computational Finance*.

• Rogers (2001). Monte Carlo valuation of American options. Math. Fin.