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Example 1: Bermuda Swaption

Swap: At some fixed time points {T0, . . . ,TI}, say quarterly,
there are the following payments

Bank 1 pays coupons according to a fixed rate θ;

Bank 2 pays coupons according to the Euribor.

Bermudan Swaption: Bank 2 has the right to cancel the
contract at one of the payment dates of its choice.
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Example 2: Cancelable snowball swap

A cancelable snowball swap is an exotic swap: the Euribor is
swaped at payment dates (e.g. semi-annually) against a
complexly structured coupon, the snowball coupon.

The swap can be canceled (terminated) at any payment date
to be chosen by the payer of the snowball coupon.

Christian Bender Option pricing by simulation



Example 2: Cancelable snowball swap

Notation:

Payment dates E = {T0, . . . ,TI}
Li (t): The interest rate at time t for a loan over the period
between Ti and Ti+1 where t ≤ Ti .

Specification of the coupons:

Bank A pays the spot-Libor in arrears, i.e. at time Ti :

Nominal× Li−1(Ti−1)(Ti − Ti−1).

Bank B pays at time Ti the snowball coupon:

Nominal× Ki−1(Ti − Ti−1)

where

Ki := I , i = 0, 1,

Ki := (Ki−1 + Ai − Li (Ti ))
+ i = 2, . . . , I − 1.

and I , Ai are specified in the contract.
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The pricing problem

Problem: How to compute the fair price of such Bermudan
products numerically?

First Step: Choice of the model.

Second Step: Calibration of the model.

Third Step: Choice of an appropriate pricing algorithm.
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Choosing a model for the Euribor

One- or two-factor short rate models, e.g. the Hull-White model:

Model type: determined by a SDE driven by a one- or
two-dimensional Brownian motion.

Advantage: Bermudan products can be priced by
straightforward implementation of trinomial trees.

Disadvantage: Model cannot capture the term structure of
caplet and swaption volatilities.
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Choosing a model for the Euribor

LIBOR market model

Model type: determined by a high-dimensional system of
SDEs driven by a possibly high-dimensional Brownian motion.

Advantage: Reasonable fit to caplet and swaption prices is
possible.

Disadvantage: Pricing by tree methods is impossible due to
the curse of dimensionality.
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Modeling error vs. numerical error

Choice between

a (typically low-dimensional) model, in which Bermudan
products can be priced with high accuracy, but which poorly
fits the observed data.

a (typically high-dimensional) model, which reasonably fits the
observed data, but requires more sophisticated pricing tools.
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An abstract framework for Bermudan products

Assumption: Arbitrage-free market of tradable securities, which is
already calibrated to liquidly traded products.

→ We have fixed a pricing measure Q connected to some discount
factor N .

Definition

A Bermudan option consists of a finite set of time points
E = {T0, . . . ,TI} and a cashflow Z(Ti ).

Interpretation: The holder of the Bermudan option is entitled
to choose one time point out of the set E , at which she
exercises the cash-flow Z, i.e. she receives e.g. Z(Ti ).
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Connection to optimal stopping

Consider the discounted cashflow Z (i) = Z(Ti )/N (Ti ).

Assume w.l.o.g. N (0) = 1.

The fair price of the Bermudan product is determined by the
optimal choice to exercise the cash-flow

sup
τ∈T0,I

EQ [Z (τ)]

where T0,I is the set of {0, . . . , I}-valued non-anticipating
random times

From now on: All (conditional) expectations are taken under
Q.
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Backward dynamic programming

Idea: Find an optimal exercise time τ∗(i) provided the option
has not been exercised before time i .

At terminal time:
τ∗(I) = I

(because no other time points are left).

At time i : Exercise immediately, if and only Z (i) is at least as
large as what you expect to get by waiting until time i + 1
and proceeding optimally from that time on:

τ∗(i) =

{
i , Z (i) ≥ E [Z (τ∗(i + 1))|Fi ]

τ∗(i + 1), otherwise

Then τ∗(0) is an optimal exercise time and E [Z (τ∗(0))] is the
fair price of the Bermudan option.
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Why Monte-Carlo is ill-suited (I)

General idea of Monte-Carlo simulation:

Starting from today’s prices of the underlying market, simulate
future scenarios of the market (under the pricing measure Q);

Approximate expectations under Q by averaging over the
simulated scenarios.

Problem:

Simulation is genuinely directed forwardly in time;

The dynamic program is directed backwardly in time.
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Why Monte-Carlo is ill-suited (II)

Problem: In each step of the backward dynamic program an
expectation must be calculated which depends on the exercise
time from the previous time step.

Naive approach: Average over simulated paths (plain Monte
Carlo) as suggested by the Law of Large Numbers.

Infeasible: Computational cost explodes rapidly with the number of
exercise dates.
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Lower bounds by simulation: General ideas

Trivial: Any sub-optimal exercise time σ induces a lower
bound by

E [Z (σ)].

If a simulation mechanism is available, simulate L independent
copies of Z (σ) and calculate the expectation by averaging.

→ estimator which is biased low.

Many algorithms have been proposed to find a ‘good’
approximative strategy σ.
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The Longstaff-Schwartz algorithm

Basic idea: approximate all (conditional) expectations in the
backward dynamic program by least-squares Monte-Carlo.

Markovian setting: RD-valued Markov process X (i) such that
Z (i) = h(i ,X (i)).

Then: E [f (X (j))|Fi ] = E [f (X (j))|X (i)] = u(X (i)).

Aim: Estimate the function u as a linear combination of basis
functions with the coefficients estimated by simulation.
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Conditional expectations via least squares Monte Carlo

Pseudo-Algorithm:

1 Choose a vector of basis functions

ψ(i , x) = (ψ1(i , x), . . . , ψK (i , x)); x ∈ RD ;

2 Simulate L independent copies Xλ(i), λ = 1, . . . , L of X ;

3 Solve the least squares problem

a(i , j ; f ) = arg min
a∈RK

1

L

L∑
λ=1

(f (Xλ(j))− ψ(i ,Xλ(i))a)2

≈ arg min
a∈RK

E
[
(f (X (j))− ψ(i ,X (i))a)2

]
;

4 Define, as estimator for E [f (X (j))|Fi ] = E [f (X (j))|X (i)],

Ê [f (X (j))|X (i)] = ψ(i ,X (i))a(i , j ; f ).
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Conditional expectations via least squares Monte Carlo
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Numerical results for Bermudan swaption

Exercise dates annually over 10 years;

Setting: 3M-LIBOR market model;

Model driven by D-dim. Brownian motion;

Basis: low-order monomials on the cashflow; approximations
of the price for European swaptions.

D LS-Lower Bound K&S Price
Y0 Interval

1 1108.8±1.41 [1108.9±2.4, 1109.4±0.7]
ITM 2 1101.6±1.53 [1100.5±2.4, 1103.7±0.7]

10 1096.4±1.61 [1096.9±2.1, 1098.1±0.6]

1 121.0±0.71 [121.0±0.6, 121.3±0.4]
OTM 2 113.3±0.75 [113.8±0.5, 114.9±0.4]

10 100.1±0.83 [100.7±0.4, 101.5±0.3]
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Numerical results for the cancelable snowball swap

Exercise dates semiannually over 10 years;

Setting: 6M-LIBOR market model;

Model driven by 19-dim. Brownian motion;

Basis: low order monomials on explanatory variables, here:
snowball coupon, spot LIBOR rate, long swap rate;
cp. Piterbarg.

LS-lower bound: 77.54 (bp) ± 0.36
Reference price interval: [106.47± 0.84, 110.22± 0.55]
(B./Kolodko/Schoenmakers)

Problems:

LS-lower price bound is significantly off;

Not clear, how to tailor the basis to the problem.
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Numerical results for the cancelable snowball swap

Exercise profile:
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Discussion of the Longstaff-Schwartz algorithm

Advantages

Easy to implement and quite fast;

Estimator is biased low (since it is based on sub-optimal
policies);

Convergence to the Bermudan price, when the basis exhausts
a complete system and the simulated paths tend to infinity
(see Clement, Lamberton & Protter; Egloff);

Simple basis functions (low order polynomials) and moderate
sample size often yield very good lower bounds.
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Discussion of the Longstaff-Schwartz algorithm

Disadvantages

The interplay of several error sources is difficult to handle:

Choice of basis
Simulation error
Error propagation backwards through time.

Theoretical convergence may be slow in specific examples:

Exponential growth in the samples when the number of basis
functions increases (Glasserman & Yu)

Simple choice of basis may yield poor lower bounds in some
difficult situations.

Questions:

How to improve upon the LS-lower bounds?

How to assess the quality of the lower bound?

Christian Bender Option pricing by simulation



Discussion of the Longstaff-Schwartz algorithm

Disadvantages

The interplay of several error sources is difficult to handle:

Choice of basis
Simulation error
Error propagation backwards through time.

Theoretical convergence may be slow in specific examples:

Exponential growth in the samples when the number of basis
functions increases (Glasserman & Yu)

Simple choice of basis may yield poor lower bounds in some
difficult situations.

Questions:

How to improve upon the LS-lower bounds?

How to assess the quality of the lower bound?

Christian Bender Option pricing by simulation



Policy improvement (B./Kolodko/Schoenmakers)

Denote by (τ(0), . . . , τ(I)) the exercise times constructed by
the LS-algorithm.

Basic idea: Compare
1 the reward from immediate exercise at time i ;
2 the highest expected reward by choosing one of the remaining

LS-exercise times τ(j), j ≥ i + 1.

Hence,

τ̃(i) := inf

{
j : i ≤ j ≤ I, Z (j) ≥ max

j+1≤p≤I
E [Z (τ(p))|Fj ]

}
.

Result: The lower bound based on τ̃(0) is always better than
the LS-lower bound.
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Policy improvement: Algorithm

Markovian setting: Z (i) = h(i ,X (i))

1 Suppose (τ(0), . . . , τ(I)) are constructed by the LS-algorithm.

2 Simulate L outer samples λX of X

3 Given i and λX , estimate e.g.

E [Z (τ(p))|Fj ] = E [h(τ(p),X (τ(p;X )))|X (i)]

by plain Monte Carlo, averaging over inner samples which are
sampled according to the conditional law given X (i) = λX (i).

4 Find L approximations of τ̃(i) by approximating the exercise
criterion

τ̃(i) = i ⇔ Z (i) ≥ max
i+1≤p≤I

E [Z (τ(p))|Fi ]

accordingly.

5 Average over the outer samples to approximate E [Z (τ̃(0))].
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Discussion of the improvement algorithm

Advantage:

Always yields tighter lower bounds than the LS-algorithm, see
the snowball example.

Disadvantages:

One layer of nested simulation is required.

Application of the plain algorithm to serious problems (e.g.
the snowball example) may require long computing times
(several hours). However, efficient variance reduction
techniques are available.
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Dual upper bounds (Rogers; Haugh and Kogan)

Rogers and Haugh & Kogan suggest:

Start with some martingale M (fair game) such that
M(0) = 0.

Define

Yup(i ;M) = M(i) + E [ max
i≤j≤I

(Z (j)−M(j)) |Fi ].

Then Yup(0;M) is an upper bound for the Bermudan price.

Simulate the upper bound Yup(0;M) by plain Monte Carlo

Yup(0;M) ≈ 1

L

L∑
λ=1

max
0≤j≤I

( λZ (j)− λM(j))

to get an estimator which is biased high.

Question: How to choose the martingale?
Christian Bender Option pricing by simulation



Upper bounds from lower bounds

Given exercise times τ = (τ(0), . . . , τ(I)) define

Ylow (i ; τ) = E [Z (τ(i))|Fi ].

(Expected gain when employing strategy τ)

Consider the martingale part from the Doob-decomposition,

M(i + 1; τ)−M(i ; τ) = Ylow (i + 1; τ)− E [Ylow (i + 1; τ)|Fi ].

The duality gap of the strategy τ is

∆τ = Yup(0;M(·, τ))− Ylow (0; τ).

For the optimal strategy τ∗ we have (Rogers; Haugh &
Kogan)

∆τ∗ = 0.
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Estimating the Doob martingale: problems

Procedure requires to estimate

M(i + 1; τ)−M(i ; τ) = Ylow (i + 1; τ)− E [Ylow (i + 1; τ)|Fi ].

Estimating the conditional expectation on the right hand side
typically destroys the martingale property of the estimator
M̂(·; τ).

Hence, Yup(0; M̂(·; τ)) may fail to be an upper bound.
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The Andersen-Broadie algorithm

Markovian setting: Z (i) = h(i ,X (i))

1 Compute the exercise times τ(i ,X ) by the Longstaff-Schwartz
algorithm;

2 Simulate L outer samples λX of X

3 Given i and λX , estimate e.g.

E [Ylow (i + 1; τ)|Fi ] = E [h(τ(i + 1),X (τ(i + 1;X )))|X (i)]

by plain Monte Carlo, averaging over inner samples which are
sampled according to the conditional law given X (i) = λX (i).

4 This yields L samples λM̂(i ; τ) estimating M(i ; τ)

5 Define

Y AB
up =

1

L

L∑
λ=1

max
0≤j≤I

( λZ (j)− λM̂(j ; τ)).

Christian Bender Option pricing by simulation



Discussion of the Andersen-Broadie algorithm

Advantages:

Y AB
up is biased high, (although λM̂(i ; τ) fail to be martingales

in general).

Reason: Use of plain Monte Carlo and convexity of the
max-operator.

Converges to Yup(0;M(·; τ)) as the number of inner and
outer simulations increases.

Disadvantage:

One layer of nested simulation is required.

Note: The reference upper bounds in the numerical examples were
computed this way.
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Fast upper bounds (Belomestny/B./Schoenmakers)

Aim: Find an estimator M̂ for the martingale

M(i + 1; τ)−M(i ; τ) = Ylow (i + 1; τ)− E [Ylow (i + 1; τ)|Fi ].

such that

1 M̂ is a martingale;

2 No need for nested simulations;

Framework: Z (i) = h(Ti ,X (Ti )), where

dX (t) = a(t,X (t))dt + b(t,X (t))dW (t), X0 = x ,

W is a D-dim. Brownian motion on [0,T ];

the coefficient functions a, b are Lipschitz in space and
1/2-Hölder in time;

X is D-dimensional.
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Fast upper bounds: Idea

Idea:

Thanks to the martingale representation theorem there is an
adapted process U such that

M(i + 1; τ)−M(i ; τ) =

∫ Ti+1

Ti

U(s)dW (s).

Given a partition π ⊃ E of [0,T ], find a non-anticipating
estimator Uπ for U, and consider the martingale

Mπ(i) =
∑

tj∈π; tj<Ti

Uπ(tj)(W (tj+1)−W (tj)).
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Algorithm

Compute the exercise family τ(i ,X ) utilizing the
Longstaff-Schwartz algorithm;

Estimate the martingale integrand

E

[
Wd(tj+1)−Wd(tj)

tj+1 − tj
h(τ(i),X (τ(i)))

∣∣∣∣ X (tj)

]
; Ti−1 ≤ tj < Ti .

via least-squares Monte-Carlo;

Use this expression as estimator Ûπ
d (tj ,X ) for the martingale

integrand and the associated estimator M̂π(i ,X ) for the
martingale M(i ; τ̂).

Simulate M new copies µX of X and estimate the Bermudan
price by

Ŷup(M̂
π) =

1

M

M∑
µ=1

max
0≤j≤I

(h(j , µXj)− M̂π(j , µX )).
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Numerical results for the Bermudan swaption

‘Fast’ upper bounds calculated with roughly 100 times less
simulated paths than Andersen/Broadie upper bounds.

Basis for upper bounds: 3 basis functions derived from
approximations of the delta for European swaptions.

D Lower Bound Upper Bound K&S Price

Y0 Yup(M̂
π) Interval

1 1108.8±1.41 1109.6±0.86 [1108.9±2.4, 1109.4±0.7]
ITM 2 1101.6±1.53 1104.7±0.91 [1100.5±2.4, 1103.7±0.7]

10 1096.4±1.61 1103.2±0.98 [1096.9±2.1, 1098.1±0.6]

1 121.0±0.71 122.4±0.87 [121.0±0.6, 121.3±0.4]
OTM 2 113.3±0.75 115.2±0.89 [113.8±0.5, 114.9±0.4]

10 100.1±0.83 103.4±0.96 [100.7±0.4, 101.5±0.3]
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Discussion of the algorithm

Advantages

Fast and easy to implement;

Converges to Yup(0;M(·; τ)), when the mesh of the time grid
decreases, the basis exhausts a complete system and the
simulated paths tend to infinity.

Disadvantages

The interplay of several error sources is difficult to handle;

Quality of the upper bounds depends on the choice of basis
more heavily than for the lower bounds.
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