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Preface

ThetaML, the Theta Modeling Language, was born in the financial laboratories of 
Thetaris GmbH. Constant refinement with financial practitioners world wide has 
allowed us to create a financial modeling language that fits the needs of the highly 
agile and computationally demanding engineering tasks.

As a domain specific language, ThetaML is designed for pricing financial deriva-
tives, selecting optimal investment strategies and managing investment risks. 
ThetaML employs a modular approach to separate the structure of financial prod-
ucts from the model stochastics and numerical details. It represents the details 
of financial contracts in the natural time order of contract-specified events. Thet-
aML programs in chronological order and streamlines code notations.

This handbook is aimed primarily at practitioners working in the financial service 
industry. We believe much of the material will hold significant appeal to those 
who are interested in exploring new approaches of financial modeling and that 
this book will satisfy their mental curiosity. Students and academics interested in 
financial engineering will find this book particularly useful for its versatile mod-
eling approaches and the simplicity of model presentation. We hope the material 
will help them to approach problem solving in financial modeling in a even more 
flexible way.

This handbook provides a comprehensive introduction to the ThetaML language. 
It uses a clear and tutorial approach to explain the language syntax, enhanced 
with many code examples and graphical aids. It also provides tutorials that apply 
the ThetaML language in financial settings. 

January 18, 2012  Stefan Dirnstorfer
Andreas J. Grau

Hongzhu Li

P a g e  | 4



P a g e  | 5

Contents

1 Introducing ThetaML  9
1.1 The ThetaML Language 10
1.2 ThetaML Language Features 12

1.2.1 Domain Specific Language for Contract Design 12
1.2.2 Programming in chronological order and computational order 14
1.2.3 Built-in conditional expectations 16
1.2.4 Implicit handling of both scenario- and time- indices 17
1.2.5 Virtual multi-threading 17
1.2.6 Pre- and post-conditions to ensure model quality 18

1.3 The Basis of ThetaML 19
1.4 The Structure of This Book 22

2 ThetaML Quick Tour 23
2.1 ThetaML Language Commands and Functions 24
2.2 Running ThetaML Example Models with Theta Suite 27
2.3 Creating and Running ThetaML Models 35

2.3.1 Creating a ThetaML Model 35
2.3.2 Running and Evaluating the ThetaML model 39

3 ThetaML Syntax Reference 45
3.1 Defining a Model 46
3.2 Using Comments 52
3.3 Assignment Operator 53
3.4 The theta command 54
3.5 The fork … end Statement 58
3.6 The if … else … end Statement 63
3.7 Array in ThetaML 66
3.8 The loop … end Statement 69

3.8.1 Fixed Length Loop  69
3.8.2 Infinite Length Loop loop inf … end 71
3.8.3 Array Looping 73



P a g e  | 6

3.8.4 Multiple Array Looping 74
3.9 Calling A Sub-model 76

Implicit fork … end 77
3.10 Matlab Native Access  82

3.10.1 Calling Matlab Functions 83
3.10.2 Calling a Complex Stepping Object  85

3.11 ThetaML Operators 102
The Future Operator “!” 102

3.12 Functions 105
3.12.1 The Function E() 105
3.12.2 The Function Beta() 108
3.12.3 Other Functions 109

3.13 System Parameters 110
3.13.1 The Parameter @dt 110
3.13.2 The Parameter @time 114

3.14 Chapter Example 115
4 The ThetaML Type System 125

4.1 The Boolean Type  126
4.2 The File Type  127
4.3 The Enum Type  128
4.4 Array types  129

5 ThetaML Interfaces 131
5.1 Interface Syntax  132
5.2 Interface Import and Export Statements 136
5.3 Language Constraints  137
5.4 Value Assertions  139

6 Workflows 141
6.1 Workflow Definitions 142
6.2 Workflow Statements 144
6.3 Assignments in Workflows 145
6.4 Loops in Workflows 146



P a g e  | 7

6.5 Conditional Executions in Workflows 147
6.6 Sub Workflows 148
6.7 Functions 149
6.8 External Namespaces 151

7 ThetaML Language by Example 153
7.1 Tutorial From European to American 154

7.1.1 The Stochastic Process 154
7.1.2 European Option 155
7.1.3 Bermudean Option 157
7.1.4 American Option 159
7.1.5 Compound Option 161
7.1.6 Hedged American Option 164

7.2 Tutorial Hedging in ThetaML 166
7.2.1 Introduction  166
7.2.2 Delta Hedging  167
7.2.3 Variance Minimization by Hedging  176

7.2.3.1 Single Dimensional Stochastics 177
7.2.3.2 Multi-Dimensional Stochastics 184

7.2.4 Static and Dynamic Hedging  185
7.2.5 Transaction Costs  193

8 ThetaML Tips and Tricks 201
8.1 Nested if Improves Speed  202
8.2 Reducing Variance by Hedging Improves Convergence  203
8.3 Adding Control Variables Can Improve Accuracy  205
8.5 Avoiding Direct Assignment of Expected 

Values Improves Accuracy  207
8.6 Keep Export Variables Unique  209

References 211
Index 213



P a g e  | 8

Text Conventions Used in This Book:

	 Bold text denotes the first appearance of a ThetaML language keyword or 
a ThetaSuite component name.

	 Italic text is used for numbered ThetaML code examples.

	 ThetaML code statements are written in a typewriter font Courier New.

	 Colored texts are ThetaML specific commands.
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1 Introducing ThetaML 

This chapter familiarizes you with ThetaML, the 
Theta Modeling Language. It provides an introduc-
tion to ThetaML and its modeling features. It also 
provides some guidelines on the structure of this 
book.

This chapter includes the following sections:

	 The ThetaML Language

	 ThetaML Language Features

	 The Basis of ThetaML

	 The Structure of this Book
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1.1 The ThetaML Language

ThetaML is designed to be as simple as possible while maintaining the ability to 
model any financially relevant task, especially in the area of using stochastic mod-
els to price financial derivatives. 

ThetaML describes financial models in two forms, either text-based as ThetaML 
Script or graphically as Thetagram. Figure 1 illustrates the relationship among 
ThetaML, ThetaML Script and Thetagram.

ThetaML

Text Graph
T
h
e
t
a
M
L
 
S
c
r
i
p
t

T
h
e
t
a
g
r
a
m 

Figure 1. The Relationship among ThetaML, ThetaML Script and Thetagram: ThetaML is the 
XML representation of ThetaML Script and Thetagram.

Both ThetaML Script and Thetagram can capture the full details of a financial 
model and may be transformed into each other, allowing the user to choose a way 
of modeling based on personal preferences and experiences. 
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ThetaML Script as a compact script language allows for rapid financial model devel-
opment in text-based form. Thetagram1 as a graphical representation requires almost 
no programming skills and quickly yields visual presentations of financial models.

In the following, we will write ThetaML when referring to ThetaML Script or The-
tagram; the exact meaning will be clear from context.

1 In the Theta Suite, a Thetagram can be automatically created from a ThetaML model using these steps: The-
tagram is created by selecting a .thetas file, right click and choose the option ‘Initialize Thetagram’. This gives 
you a list of ThetaML model names in rectangular-shaped boxes. It includes all the models in the selected 
.thetas file. By double clicking one of the boxed model name, we get a display of the graphs generated for that 
particular model.
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1.2 ThetaML Language Features

As domain specific programming language, ThetaML has both functional and pro-
cedural features. The main language features include:

	Domain specific language for contract design

	 Programming in chronological order and computational order

	 Built-in conditional expectations

	 Implicit handling of scenario- and time- indices

	 Virtual multi-threading

	 Pre- and post-conditions on models to ensure model correctness

We elaborate on each feature in the following.

1.2.1	 Domain	Specific	Language	for	Contract	Design

ThetaML is the domain specific language which we use to describe and model the 
structural features of stochastic models in financial engineering. 

It is designed for pricing financial derivatives, selecting optimal investment strat-
egies and managing investment risks. 

Defining and reading financial products in ThetaML is done with unprecedented 
simplicity and is significantly faster than using conventional term sheets.
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Complex term sheets are currently the only way to express and communicate the 
contents of a financial product. The process of turning a term sheet into a com-
putable pricing algorithm is long and error prone. So far, there exists no adequate 
standard for specifying the structural model of an arbitrary financial derivative. 
To address this issue, we introduce the definition language ThetaML that allows 
the specification of structural models in a way that is both precise and intuitive. 
Furthermore, details of financial contracts can be represented in the natural time 
order of the events.

ThetaML can be automatically translated into numerical algorithms. Hence, it 
is not only a description language, but also solves a specific numerical prob-
lem. Being completely independent of the numerical schemes, Monte Carlo, PDE 
solvers or trees could encompassingly be used to compute the desired result. A 
financial engineer using ThetaML to design or analyze a certain financial prod-
uct can thus focus on the problem domain without having to worry about the 
numerical details.
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1.2.2 Programming in chronological order and computational order

Programming in chronological event order is what distinguishes ThetaML most 
from other programming languages. 

Figure 2 illustrates the difference between programming in chronological order 
and computational order, using the pricing process for an American-type option 
as an example. The ThetaML pseudo code for pricing the American-type option 
simply follows the time order in which the events of a pricing model are (expect-
ed) to occur. In contrast, code written in computational order requires significant 
reordering.

The unique feature of ThetaML as a programming language is the ability to access 
the future values of stochastic variables. This is achieved with the future operator 
“!”. The future operator “!” and the theta2 command allow ThetaML programs to 
be written in chronological order but be computationally evaluated backward in 
time. 

2 For definitions of the future operator “!” and the theta command, please reference section 2.1.
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Computational
Order

Chronological 
Order

ThetaML
Pseudo Code

Decide 
Expected 
Future Payments

Propagate 
Time  Process

If E(V!) >  iV
   V = iV
end

Time passes,
if not exercise

Compute
Final Payment       theta T

Receive 
Final Payment

Compute Current
Expected Value       V = iV*

*intrinsic value

Figure 2. Illustration of programming in chronological order and computational order, 
with a ThetaML pseudo code for an American-Type Option. 
In the graph, each text box has an event happening. Text backgrounds indicate time order. 
The lightest background means the events are evaluated at current time; intermediately 
shaded background indicates intermediate time propagation process, and deep colored 
events happen at final time.

In comparison, conventional programming languages can only access a value that is 
previously assigned to a variable and the program codes are evaluated sequentially.

ThetaML as a programming language includes the ability to program conventionally 
in computational order; on top of that, it adds the unique style to program in chrono-
logical order. This is facilitated with the future operator “!” and the theta command.
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The ability to program in chronological event order is unprecedented. The fu-
ture operator “!” is handy, especially in cases of pricing more complex financial 
derivatives with early exercise decisions, such as American options, chooser op-
tions, convertible bonds and others, when the decision-making process involves 
expected future values unknown at the decision-making time.

1.2.3 Built-in conditional expectations

ThetaML can evaluate the conditional properties of stochastic variables or pro-
cesses as a statistical approximation using a single function - E(). 

In ThetaML, time is virtual and is called model time. Model time is defined in 
terms of chronological event-triggered order, that is, model time follows the time 
sequence in which chronological events occur in a pricing model. The function 
E()is computed conditional on all function parameters values that are known at 
the corresponding model time.

The arguments of the function E() implicitly access their estimated future values 
at future time points. The access to future values at current time is realized with 
the future operator “!”. Advancing model time between current and future time is 
done with the theta command.

The function E() is applicable to all process variables in ThetaML. In order to 
compute the expectation function E(), the compiler automatically identifies the 
independent variables, conditional on the information known at the current mod-
el time. More precisely, the compiler determines the smallest sigma field of the 
underlying state variables at current model time, by filtering out the set of state 
variables that are measurable at current model time. Thus, the compiler hides the 
hassle associated with the numerical evaluation of E()and conditions it on the 
information known at the corresponding model time. The function E()can 
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be applied, for example, to the conditional evaluation process in the Least 
Squares Monte Carlo (LSMC) method for early exercisable options. It can 
also be used in the risk-neutral pricing of European-type options, in which 
case the function E() summarizes the averaging process as what is done with 
Monte Carlo pricing derivatives in other programming languages. 

1.2.4 Implicit handling of both scenario- and time- indices

Variables defined in ThetaML represent a stochastic process. They do not re-
quire explicit scenario- or time- indices. The scenario- and time- indices are 
implicitly handled by ThetaML. By writing ThetaML in chronological order, the 
semantic information implicit in a process variable is revealed by the model 
time explicitly defined in a pricing application. Consequently, the pricing task 
is independent of the numerical procedures used to simulate the stochastic 
processes. 

In Monte Carlo evaluations, we often need to consider both scenario and time in-
dices. This is where index confusions and errors might easily occur. By simultane-
ously taking care of both scenario and time indices, ThetaML saves users loads of 
efforts in cases like writing loops and evaluating conditional multi-indexed state-
ments, besides having the desirable effect of producing compact programming 
codes. 

1.2.5 Virtual multi-threading

ThetaML allows simulations with multiple threads (i.e. multiple simulation tasks) 
to be executed in parallel at model time. This is enabled with the fork … end state-
ment and the theta command. 
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As an investment portfolio typically consists of hundreds of financial products, 
each financial product may have some event-related peculiarities, the separation 
and synchronization of simulation tasks is both convenient and necessary.

In ThetaML, the fork … end statement is used to couple multiple simulation tasks 
that occur parallel in model time; the theta command that defines and passes the 
model time is used to synchronize the simulation tasks virtually paralleled by the 
fork … end statement. 

1.2.6 Pre- and post-conditions to ensure model quality

ThetaML has interfaces to ensure that certain parameter or process values are 
within the range of the constraints. The constraints for initial parameter values 
are imposed before a model is run. If a ThetaML model does not comply with the 
constraints imposed by the interface, the model can not be executed and returns 
the violated constraint instead. The constraints on the exported process variables 
are imposed after a model is run. This post conditions must be satisfied by the 
exported variables at all model time steps. 

Interfaces in ThetaML make easy the task of model reviews, such that the mod-
eler does not have to check each sub_model for violations of value constraints. 
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1.3 The Basis of ThetaML

The essence of ThetaML is the virtual timing model it operates in. 

Unlike conventional programming languages where the computational flow is de-
termined by the order of code statements, ThetaML operates on a chronological 
model time axis: ThetaML allows the programmer to insert time delays between 
code statements at different model times using the theta command. The values 
of variables at a given line of code are evaluated at the model time associated with 
that line of code. 

Different blocks of codes executed simultaneously have a common model time 
axis. The model time grid is a collection of all the event times occurred in multiple 
simulation tasks; different simulation tasks may have different events occurring 
at different time. Within multiple simulation tasks, variables can be cross-ac-
cessed and all variable values at that line of code are evaluated at the model time 
executed at that line of code.
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The ThetaML code and Figure 3 below give an illustration for how the virtual tim-
ing model operates in ThetaML:

 % the fork … end block that performs simulation task 1
1: fork
2:  theta 1.5  % 1.5 time units pass from time 0
3:  x = 1  % at time 1.5, x is assigned the value 1
4:  theta 4.5  % another 4.5 time units pass
5:  x = 4  % at time 6, x is assigned the value 4
6: end

7: % the fork … end block that performs simulation task 2
8: fork
9:  y = 5  % at time 0, y is assigned the value 5
10:  theta 3  % 3 time units pass from time 0
11:  y = 10  % at time 3, y is assigned the value 10
12: end

13: % code statements that perform simulation task 3
14: theta 1.5  % 1.5 time units pass from time 0
15: z = x!  % at time 1.5, z accesses the future value of x

x = 1 x = 4
Simulation task 1

Simulation task 3

Simulation task 2
y = 5 y = 10

z = x!
fork

0 1.5 3  6 model time

 
Figure 3. The virtual timing model in ThetaML.
This figure is a graphical illustration of the above ThetaML code statements. 
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In Figure 3, the time axis records all the model times occurred in the three simula-
tion tasks. For example, Simulation task 1 has an event happening at time 1.5, 
i.e. x is assigned a value of 1 (line 3 in the ThetaML code). Simulation task 2 
has an event happening at time 3, i.e. y = 10 (line 11 in the ThetaML code). 
Simulation task 3 cross assesses the value of x in Simulation task 1 via z = 
x! (line 15 in the ThetaML code), i.e. the variable z is assigned the future value of 
x (x = 4 at time 6) using the future operator “!”. 

In ThetaML, the simulation tasks are virtually paralleled using the fork … end 
statement and synchronized by the theta command. As a result, the model time 
axis combines all the event time occurred in the three simulation tasks and it is 
shared by the three simulation tasks. Time passing along the model time axis is 
enabled with the ThetaML command theta. 

This virtual timing model of ThetaML is the key to its ease of use in describing 
financial derivatives. Since financial derivative contracts typically have sequential 
time-triggered events, such as scheduled payments, a maturity time, etc., Thet-
aML can simulate this type of multiple-event sequential-time processes. The abil-
ity to execute multiple code elements in parallel allows the users to model cross-
dependent financial products or variables. An option on a bond can be simulated 
in a way such that both processes - the option and its underlying bond - evolve as 
what they would evolve in real-time financial markets.
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1.4 The Structure of This Book

The plan of this book is as follows. After introducing ThetaML in Chapter 1, we 
provide in Chapter 2 a quick tour of ThetaML. Chapter 3 documents the detailed 
ThetaML language syntax and provides many code examples. The Chapter Ex-
ample gives a first application of ThetaML in financial modeling. Following that, 
in Chapter 4 we detail on the ThetaML type system. Chapter 5 documents Thet-
aML interfaces. Chapter 6 writes about ThetaML workflows. Chapter 7 provides 
in ThetaML two tutorial examples in the area of pricing and hedging financial 
derivatives. Finally, in Chapter 8 we give some tips and tricks for more efficient 
use of ThetaML in financial applications. 
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2 ThetaML Quick Tour

This Chapter gives an overview of

	 ThetaML Language commands

	 Running a ThetaML example in Theta Suite

	 Creating the first ThetaML model and eval-
uating it with Theta Suite
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2.1 ThetaML Language Commands and Functions

The following is a selected list of ThetaML language concepts, commands and 
functions.

	model time
In a ThetaML model, time is virtual and is called model time. Model 
time is defined in terms of chronological event-triggered order. Mod-
el time proceeds forward in time according to the time sequence of 
events that occur in a pricing model. Model time is passed by the theta 
command.

	 the theta / Theta command 
The crucial theta command defines and passes model time. Model time 
is used to synchronize multiple simulation tasks that occur parallel in 
model time. Every theta command is followed by a statement defining a 
time interval.

	 the fork … end statement
With the fork … end statement, code blocks are virtually executed in par-
allel in model time. 

	 the future operator “!” 
The unique future operator “!” allows access to the future values of a 
variable. 

	 the infinite loop loop inf … end
The flexible loop inf allows the loop to run until all other fixed-length 
loops sharing the same model time axis are terminated by their model de-
termined length.
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	 the fixed loop loop … end
The loop … end statement allows repeated executions for a fixed num-
ber of times. The parameter after the loop statement defines the type of 
loops. It can be an integer for a finite number of iterations, or an array, in 
which case the loop will iterate over the elements of the array.

	 the function E()
The E() function computes the conditional expected value of a variable or 
an expression. 

	 the function Beta()
The Beta() function takes two arguments and computes the beta factor(s) 
between these two arguments, conditional on the current information. 

	 the parameter @dt
The time interval parameter @dt has different values depending on its 
context. If @dt follows the theta command, it evaluates to the time that 
passes to the next event-triggered time. In case @dt is found elsewhere, 
it evaluates to the time step that has passed since the thread’s previous 
theta command. The @dt parameter is most often found within the infi-
nite loop loop inf … end.
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	 the parameter @time
The @time parameter variable returns the current model time. It is the 
sum of all previous theta @dt time steps. The @time parameter is most 
often found within the infinite loop loop inf … end.

	 the parameter @scenarioIndex
The parameter @scenarioIndex extracts the index of current Monte-Car-
lo scenario.

	 the parameter @scenarioSize
The parameter @scenarioSize extracts the size of Monte-Carlo scenarios.
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2.2 Running ThetaML Example Models with Theta Suite

This section gives an introduction to running example models in Theta Suite. 

1) We can start run “Theta Suite” from the “Start” menu or by double clicking 
“ThetaSuite.exe”. After a few seconds’ loading, we have in front of us the Wel-
come page of Theta Suite.
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2) In the “Welcome” view of Theta Suite, there are sections that guide you to find 
information about how to start using Theta Suite and how to write ThetaML 
models.

3) Every installed ThetaSuite.exe has a “Sample Project” folder that provides the 
user a list of ThetaML model examples. We can find the “Project Explorer” 
view on the upper left corner of the Theta Suite workspace. In case the “Proj-
ect Explorer” view is not already open, we can open the view from the menu 
“Window”, then choose “Show View”, and select “Project Explorer”.

4) In the “Project Explorer” view, we can open the folder “Sample Project”, then 
choose the subfolder “Products”. Under the subfolder “Products”, choose the 
sub_subfolder “Derivatives”, there is a list of folders named after various op-
tion types, such as “European”, “American”, “Asian”, “Chooser”, and so on. Open 
the folder “American”, by clicking on the boxed “+” sign. This expands into a 
list of files, including the ThetaML configuration file ended with type .thetaml, 
the ThetaML model file ended with type .thetas, or Thetagram file ended with 
type .thetagram. 

5) Select and double click the runtime configuration “american.thetaml”. This 
brings into view the ThetaML Configurator page: 
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6) To start model evaluation, we give some values for the input parameters in 
the field “Runtime parameters”. We then specify the number of simulation 
paths and provide a random seed for the “Monte-Carlo method parameters” 
under the field “Evaluation method parameters”. In the field “Code generator 
parameters”, we can browse the existing model files and select the one we 
wish to evaluate – american.thetas - for “Model file”. This automatically brings 
up a drop box list of model names for “Model to run”, choose the model named 
“AmericanPut”. The default name for the “Output file” is “out” with type .m, i.e. 
the generated output file is a Matlab m-file. 
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7) To run the model “AmericanPut”, click the button “Generate & Run” in the “Ac-
tions” bar. This leads to a status window titled “Running generated code…”, 
the progress bar in the status window indicates the progress of the running 
process. The compiler first optimizes the code execution order, then com-
piles and runs the codes. After the code optimization, compiling and run-
ning process, the “Theta Suite Result Explorer” comes up and shows a list of 
named variables exported by the “AmericanPut” model in the file “american.
thetas”. 

8) The “Theta Suite Result Explorer” is a versatile tool with many options for 
analyzing simulation results. Simply select a variable, the “Status” field shows 
a summary of the simulated results for the selected variable. This includes 
the number of simulation paths, the dimension of the variable, and the mean 
value of the variable plus and minus two standard errors. 

Select the variable “S”, we have in the field “Step : time” a list of ‘index - model 
time’ pairs: the left-hand side of “:” marks the index for “S” at a certain model 
time, the right-hand side of “:” are the model times of “S”. If we select the index 
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step “10” at model time “0.018”, the “Mean” value under the “Status” field au-
tomatically changes to the mean value of “S” plus and minus two standard er-
rors at this model time, this average is taken across all the Monte-Carlo paths. 
We can also press the “Plot” button and bring up the “Histogram” plot of the 
stock “S” distributed across all Monte-Carlo paths at model time “0.018”. 

If we are interested to know the values of “S” at a selected number of time steps, 
such as the values of “S” at every ten model time steps, we can filter the values 
of “S” in the field “Time-step filter” by using the range specifier: [from : step_size 
: to], in this case it is 1 : 10 : 503, then press enter. As expected, the “Time-step 
filter” selects every 10-th of the “index - model time” pairs. Simply press the 
“Plot” button, we have the following screen shot of the “Sample paths of Simu-
lated stock prices (S)”, for values of “S” spaced at every 10-th model time steps:

To see the quantile distribution of Stock “S”, select “S” in the “Theta Suite Re-
sult Explorer”, right click and choose “Plot” then “Quantiles”, this brings up 
the quantile plot of stock “S”: 
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If the Stock “S” is two dimensional, we can use the “Dimension filter” field to 
single out stock values for either the first or the second dimension, by using 
the range specifier 1:1 or 2:2 respectively.

9) The “Theta Suite Result Explorer” provides two other options for further ex-
aminations of the simulation results. We can either “Open in Matlab” or “Open 
in Excel” the output data, by pressing the respective buttons. 

The “Open in Matlab” button brings up the Matlab console window. Select the 
“Workspace” tab, we have the “conf” struct in view. Double click on the “conf” 
name and bring up the “Array Editor” for “conf”. The “Array Editor – conf” has 
the same fields as the ThetaML Configurator. The “conf” fields are stored as 
Matlab struct type. Double clicking any of the field values shows the subfields 
of yet another struct type, simply double clicking again any of the field values, 
we eventually arrive at the parameter values initially inputted by us in the 
ThetaML Configurator. 
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The “Open in Excel” button leads us to an export dialogue box, which asks for 
the export type for the output data. Select for example “Excel plain”, we have 
the input fields respectively for “File name” and “Scenario range”. We can ei-
ther give a new name for the output file or browse and select an existing file to 
replace the old data. The default “Scenario range” for the simulation outputs 
is one scenario, we can selectively specify the “Scenario range” that we wish 
to export by using the range operator [from : step_size : to], such as [1 : 2 : 
10], that is, every second scenario of the first 10 scenarios. Pressing either the 
button “Export to file” or the button “Open in Excel” exports the output data 
to the desired destination. The “Export to file” option shows the exported file 
name in the current directory, i.e. in the folder “American”; the “Open in Excel” 
option directly opens the Excel workbook with one worksheet named “Mean” 
and a number of other worksheets named “Scenario_#”, where the # sign 
represents Scenario number. For example, the worksheet name “Scenario_1” 
refers to the first scenario in the simulation output, the worksheet name “Sce-
nario_3” refers to the third scenario in the simulation output, and so on. The 
worksheet “Mean” gives the mean values for the exported variables at each 
model time, the mean is taken over all the Monte-Carlo paths. The worksheet 
“Scenario_1”, for example, has the simulated values for the exported variables 
at each model time in the first scenario.
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10) The “Theta Suite Result Explorer” shows in the “Pick variable with simula-
tion” field a list of the saved configuration variables, selecting any variable 
from the list brings up the saved simulation output for variables exported by 
that configuration variable. The option to switch easily from one saved output 
to another helps to compare simulation results without having to generate 
and run the codes each time.

11) We can alternatively export and save output data using the menu “File”, and 
plot the graphs using the options provided by the menu “Plotting”. 
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2.3 Creating and Running ThetaML Models

This section shows you how to create and run your own ThetaML model in Theta Suite. 

2.3.1 Creating a ThetaML Model

To start with, we create a project to hold the new file. Right click a space in the 
“Project Explorer” view, select “New” then “Project…”: 

This brings out the “New Project” wizard window. Select “General” then “Project”, 
and press the “Next” button. In the next “New Project” window, give a name for 
the new project, such as “ThetaSuite Demo” in the following picture: 
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Then press the “Finish” button, the created new project shows up in the “Project 
Explorer” view along with other existing projects. 

We can now create a model file within the new project. Select and right click the 
“ThetaSuite Demo” project, select “New” then “File”. 

In the “New File” dialog window, select the parent folder “ThetaSuite Demo”, type 
in the file name “demo.thetas”:



P a g e  | 37

After pressing the “Finish” button, we have an empty editor. 
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We can now start writing ThetaML models in the editor. The following is an exam-
ple ThetaML model for simulating stock prices “S” that are driven by a Geometric 
Brownian motion process: 

% This model simulates a stock price process ‘S’. 
% The stock prices ‘S’ follow a Geometric Brownian motion
% process. The model name is ‘GBM’, it imports a 
% parameter named ‘S0’ as the initial stock price, 
% and exports in the variable ’S’ the simulated 
% stock price process
model GBM
 import S0 “Initial stock price”
  export S  “Simulated stock price process”

 % setting the stock price parameters
 % ’mu’ is the drift of the stock prices ‘S’
 mu = 0.05

 % ’sigma’ is the volatility of the stock prices ‘S’
  sigma = 0.4

 % initialize the stock prices ‘S’ at ‘S0’
 S = S0

  % loop 100 times
  loop 100
   % time passing of ‘1/100’ time unit
   theta 1/100

  % update the stock prices ‘S’ for the time step @dt
  S = S * exp( (mu - 0.5 * sigma^2) * @dt 
   + sqrt(@dt) * sigma * randn() )
 end
end 

Copy and paste the above ThetaML model GBM into the editor, we have the follow-
ing screen shot:
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2.3.2 Running and Evaluating the ThetaML model

To evaluate the ThetaML model GBM, save the model file “demo.thetas”. Then create 
a configuration file called “demo.thetaml”. The configuration file is automatically cre-
ated by clicking the “ThetaML” button  on the menu bar in the above screen shot. 
The configuration file can also be created by selecting the “demo.thetas” model file in 
the “Project Explorer” view, right clicking and choosing the option “Initialize ThetaML 
Configuration”. Either way, we have the following “ThetaML Configurator” page: 
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In the configuration editor of “demo.thetaml”, we give a value for the “Initial stock 
price (S0)” in the field “Runtime parameters”, specify the “Number of Monte-Carlo 
paths” and set the “Seed for random number generation” in the field “Monte-Carlo 
method parameters”. Then select or type in “demo.thetas” for the “Model file”, 
choose the ThetaML model “GBM” for the “Model to run”. 

To start the model evaluation, click the button “Generate & Run” in the “Actions” 
bar.

After the code compiling and running process, the “Theta Suite Result Explorer” 
shows up. The screen shot looks like this: 
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We can examine the simulation results for stock prices “S”. Select the variable “S”, 
right click and choose “Plot”, then “Sample paths”, this produces a sample path 
plot of stock prices “S” as shown in the following figure:

This figure can alternatively be produced by selecting the variable “S” then press-
ing the button “Plot”.
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At this point, we hope that you know already the basics of Theta Suite and how to 
create and run ThetaML models. There are many other options available, simply 
play around and get familiar with the software features, it will come handy when 
later using ThetaML in financial modeling. 
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Overview of the ThetaML Language

The Theta Modeling Language (ThetaML) is a Domain Specific Language 
(DSL). ThetaML is an extension to simple procedural programming languages. 
It is a notation for describing the structure of financial products. The notation 
is generic, simple and yet is backed by a solid mathematical and computa-
tional interpretation. ThetaML is unprecedented in its ability to program in 
chronological order, above and beyond the conventional computational pro-
gramming order. 

ThetaML focuses on financial product structural features and abstracts 
these structural features from numerical details. ThetaML has the following 
features:

	 Expressiveness: all features of a financial product are presented in a 
precise and compact manner. 

	Modularity: the structure of financial products is separated from model 
stochastics and numerical details. 

	 Transparency: ThetaML is easily comprehensible and allows for concise 
communication and documentation of financial product details. 

	 Integrability: ThetaML can be easily integrated with the existing code, 
which enables the users to build upon previous work. 

	 Simplicity: little learning effort is required for a computer literate. 
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Why Expressiveness, Modularity, Transparency, Integrability and Simplicity 
are the most important properties for a Domain Specific Language in finance? 
The question may be best answered by the following texts:

Expressiveness is important since a description language should ideally be 
able to encompass all product features of different financial contracts in an 
investment portfolio. It is also important that all necessary delivery options 
and day count conventions included in the transactions can be precisely and 
concisely represented.

Modularity allows separation of responsibilities, such that product structur-
ers can focus on product features and quants can focus on the pricing models. 
Furthermore, modular code greatly improves maintainability.

Transparency significantly improves program maintainability. ThetaML also 
describes financial products in an intuitive and compact way and makes it 
easier to communicate how financial products work.

Integrability with existing functionalities can be guaranteed by the ThetaML 
programming paradigm which is very close to standard procedural program-
ming that facilitates variables and procedure calls. Reuse of stochastic models 
and numerical procedures is important to a smooth transition from the previ-
ous modeling process to the new one. 

The ThetaML language is simple and easy to learn. Basic programming skills 
is suffice to learn the language. 
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3 ThetaML Syntax Reference

This chapter documents the Syntax allowed in Thet-
aML models. The following contents are included: 

	Defining a model

	 Using comments 

	 Assignments

	Model time passing with the theta command

	 Using fork … end to define parallel processes in time

	  if … else … end statement for conditional evaluations

	 Arrays in ThetaML
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3.1	 Defining	a	Model

A model in ThetaML is equivalent to a function or a subroutine in other proce-
dural programming languages.

A model in ThetaML has the following structure: 

model <Model Name> 
 <Import/Export Statements> 

 
 <Processing Statements>
end

A model starts with the keyword model and is terminated with the keyword end. 
The model name follows the keyword model. 

Model arguments can be parameters or processes and they are imported into the 
model structure using the keyword import. Imported parameters or processes 
are given a name and an optional description string in double quotes, e.g. “im-
port variables description string”. The description for the imported vari-
ables shows up in the ThetaML	Configurator3 used to run the model. Multiple 
parameters or processes can be imported using a single import keyword, they are 
separated by commas.

The values or processes computed by the model are returned in named variables 
via the keyword export. They can be used for further analyses or be imported 
by other models that call this model as a subroutine. Exported variables must be 
assigned a value within the body of the model. The exported variables can have 
an optional description string, e.g. “export variables description string”.

3 For descriptions on the ThetaML Configurator, please refer to section 2.2 step 5).
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The description for the exported variables shows up in the Theta Suite Result 
Explorer 4. Multiple parameters or processes can be exported using a single ex-
port keyword, they are separated by commas.

ThetaML uses the same naming convention for parameters as other program-
ming languages. Variable names can contain letters, digits and single underscore 
characters; spaces, punctuation marks and symbols are not allowed. Also, vari-
able names cannot start with digits. In ThetaML, variable names are case sensi-
tive. For example, put differs from Put. Certain ThetaML reserved keywords and 
type names cannot be used as variable names. The length of variable names is not 
limited, but it is good programming style to keep variable names short and infor-
mative. Examples of valid variable names in ThetaML are:

AmericanOption, discountBond, _p_HestonModel, HW2factor

The following terms are reserved keywords in ThetaML:

assert, call, else, end, export, fork, from, if, implements, import, 

inf, interface, length, loop, model, theta, to, type, workflow

The following terms are reserved type names in ThetaML:

boolean, date, enum, file, float, object, outputfile, string 

The first letter of each keyword and type name can be capitalized, i.e. If and if are 
the same, Boolean and boolean are the same, and so on.

4 For descriptions on the Theta Suite Result Explorer, please refer to section 2.2 step 7).
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The following are reserved function names in ThetaML:

Beta(), E(), rand(), randn()

The following are reserved operator symbols in ThetaML:

! (the exclamation mark), @ (the at sign)

The following are reserved parameter functions in ThetaML:

@time, @dt, @scenarioIndex, @scenarioSize

In ThetaML, the import and export statements can occur once on a single line 
or multiple times (in which case, they are separated with a semi-colon “;”). For 
readability and good programming style, we recommend using one import or ex-
port statement per line. Below is an example for using the import and export 
statements:

 import x1  “stochastic process x1”
 import x2  “stochastic process x2”
 import a, b, c  “processes a, b, c”

 export y1  “stochastic process y1”
 export y2  “stochastic process y2”

 export e, f, g  “processes e, f, g”

In ThetaML, variables are imported as processes. The arguments are imported 
as if there were passed by reference because the values of a variable can change 
when model time changes. Stated differently, a process may take different val-
ues at different model times in the modeling process. After the import and ex-
port statements, the body of a model processes the code statements that define 
a model.
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Note: In ThetaML, model arguments are imported as processes, they are 
passed by reference; their values can change when model time passes.

At the time of import, the type of an imported variable is unknown. It is deter-
mined later on in any of the following ways: 

	 In the modeling process, the specific use of the variable implicitly deter-
mines its type.

	When imported from an external model, the variable type is determined 
externally.

	Numeric data types in ThetaML are double-precision floating-point 
numbers. 

	 If the other ways are inadequate, the type keyword can explicitly specify 
its type (after all the import and export statements). 

Chapter 4 “The ThetaML type system” gives details on use of variable types in 
ThetaML.

Note: In ThetaML, numerical data types are double-precision floating-point 
numbers.
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Following are some examples defining models and importing/exporting variables 
into the models. All code statements in ThetaML can be optionally terminated 
with the “;” symbol (a semi-colon).

Example 1:

An empty model is formulated like this:

1: model EmptyModel
2: 
3: end

Example 2:

The following model imports a variable x (line 2) and exports its squared value 
(line 5) in the variable y:

1: model xSquared
2:  import x
3:  export y “x squared”
4:
5:  y = x^2
6:

7: end
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Example 3:

The following model imports a variable x (line 2) and exports double its value 
(line 5 - line 7) in the variable y:

1: model  Double_x
2:  import x
3:  export y

4:  % the value of a! waits to be determined later
5:  y = a! * x 

6:  % a is assigned 2, as such a! = 2 at 5
7:  a = 2 
8:
9: end 

In the model Double_x, the variable a is referenced by the future operator “!” in 
line 5. The future operator “!” accesses a = 2 at line 7, and returns the result 2 
* x in the variable y (line 5).



P a g e  | 52

3.2 Using Comments

Comments in ThetaML are initiated with the symbol %, everything after the sym-
bol % until the end of the line is ignored by the compiler, including comments 
within comments. 

The following is an example of using comments in ThetaML:

model  Comments
  %this 
  % is 
  % % a % comment

end
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3.3 Assignment Operator

Assignments are done using the = operator, e.g.

<variable> = <formula>

Examples of using assignments in ThetaML:

  x = 42
  x = 7 * 9

  y = 2 + x

Note that in the last statement, the variables x and y can be, for example, financial 
processes with scenario and time as indexes. In ThetaML, processes implicitly 
incorporate both scenario and time indices. Thus, scalar variables and matrices 
have the same notation. This simplified notation will come in very handy later 
when used in solving financial problems.

Note: In ThetaML, a variable that denotes a process implicitly incorporates 
both scenario and time indexes. 
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3.4 The theta command

The theta command is a crucial statement in ThetaML. It defines and passes the 
model time. Every theta statement is followed by a statement defining a time 
interval. 

The theta command:

 theta <time step> 
or 
 Theta <time step>

Model time is used to synchronize multiple threads that occur parallel in virtual 
time. When external numerical routines5 are called to compute certain model pa-
rameters, model time also allows synchronizations with the external numerical 
routines.

 
Note: In ThetaML, model time proceeds forward in time according to the tim-
ing order of events happening in a pricing model. Model time is passed by the 
theta command.

5 The use of external numerical routines in ThetaML is further elaborated in section 3.10 Matlab Native Access
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The ThetaML example below illustrates how model time works. 

Example 4:

1: model A
2:  import S  “S is a process computed in model B”
3:  export X
4:  export Y
5:
6:  theta 0.5  % time passes by 0.5 unit
7:  X = S  % X is assigned the value of S at time 0.5
8:
9:  theta 1.5  % time passes by another 1.5 unit
10:  Y = S  % Y is assigned the value of S at time 2
11:
12:end

1: model B
2:  export S  “Process S”
3:
4:  S = 1  % at time 0, S = 1
5:  theta 1  % time passes by 1 unit
6:  S = 2  % at time 1, S = 2
7:

8: end

When a model that calls or references models A and B is run, the variable S is 
modified and exported by model B, and subsequently used in model A. 

In model B, the variable S is assigned a value of 1 at time 0 (line 4), and a value of 
2 (line 6) at time 1 (1 time unit is passed by the theta command). In between 
time 0 and 1, the variable S takes the value of 1 assigned at time 0. After time 1, 
the variable S takes the value of 2 assigned at time 1.
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In the model that calls or references models A and B, model A imports the process 
S exported from model B. Since S is imported as a process, it automatically syn-
chronizes in model time with the processes X and Y defined in model A. 

In model A, as time passes by 0.5 units with the command theta 0.5 (line 6), 
the variables X is assigned the value of S at time 0.5, i.e. X = 1 (line 7). As time 
passes by a further 1.5 units, theta 1.5 (line 9), the variables Y is assigned 
the value of S at time 2, i.e. Y = 2 (line 10). 

The example below is simple to understand. Figure 4 illustrates the example’s 
model time passing using the theta command.

Example 5:

 y = 0  % y = 0 at time 0
 theta 1  % 1 time unit passes

 y = 3  % an event happens at time 1: y is assigned 3

 theta 0.5  % another 0.5 time units pass
 y = 1  % an event happens at time 1.5: y is assigned 1

 theta 1.5  % another 1.5 time units pass
 y = 4  % an event happens at time 3: y is assigned 4

 theta 1/4  % another 1/4 time units pass
 y = 2  % an event happens at time 3 and 1/4:
   % y is assigned 2

 

y = 0 y = 3 y = 1 y = 4 model timey = 2

theta 1 theta 0.5 theta 1.5 theta 1/4
 

Figure 4. Model time passing with the theta command from Example 5.
The model time grid is divided at the time when an event happens. The theta command passes 
model time from one point in time to the next one. 
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In Figure 4, the variable y is set to 0 at time 0. With time passing by 1 time unit, y 
= 3 at time 1. After another 0.5 time units, y = 1 at time 1.5. At time 3¼ (1 + 0.5 
+ 1.5 + 1/4 = 3¼), y = 2.
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3.5 The fork … end Statement

With the fork … end statement, code blocks are executed in parallel in model 
time. The theta command enables multiple threads bundled by the fork … end 
statement to be executed in parallel.

The fork … end statement:

 fork
  commands
 end

or

 fork
  commands
 end
 commands

A fork block begins with fork and is terminated by the end keyword. Statements 
between these two tokens share the same time axis with other statements in the 
model, i.e. they run in parallel in model time. Time passing along the time axis is 
advanced by the theta command. A fork … end statement coupled with another 
fork … end statement run in parallel in model time. 

Note: In ThetaML, the fork … end statement enables multiple simulation 
threads to run (virtually) parallel in model time.
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The following example shows two fork … end blocks that run parallel in model 
time: 

Example 6:

   % the first fork … end block
1: fork
2:  a = 0  % at time 0, a = 0
3:  theta 2  % 2 time units pass
4:  a = 5  % at time 2, a = 5
5: end

   % the second fork … end block, runs virtually parallel 
   % with the first fork … end block
1: fork
2:  theta 1  % 1 time unit passes from time 0
3:  x = a  % at time 1, x = 0
4:  theta 2  % another 2 time units pass
5:  x = a  % at time 3, x = 5

6: end

The first block initially sets the variable a to zero (line 2), then sets it to 5 (line 4) 
after 2 time units have passed with the command theta 2. Between time 0 and 
2, the variable a takes the value of 0 assigned at time 0. After time 2, the variable 
a takes the value 5 assigned at time 2.

The second block shares the same model time axis with the first fork … end 
block. It proceeds to time 1 with the command theta 1 (line 2), and copies the 
value of a at time 1 (a = 0) to the variable x (line 3). After a further 2 time units 
(line 4), at time 3 the value of a is copied to x again, i.e. x = 5 (line 5).

In case multiple write operations occur in the same timing model, the value as-
signed later overwrites the previous value(s). The following example illustrates 
this.
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Example 7:

  % the fork … end block
1:  fork
2:  a = 0  % at time 0, a = 0
3:  theta 3  % 3 time units pass
4:  a = 5  % at time 3, a = 5
5:  end
6:
7:  % code statements after the fork … end block
8:  theta 1  % 1 time unit passes from time 0
9:  x = a  % at time 1, x = 0
10: theta 2  % 2 time units pass

11: x = a  % at time 3: x = 5

 
a = 0 a = 5

x = a
fork

0 1 2 3 time

x = a

Figure 5. Multiple write operations in the same timing model, from Example 7.
The value assigned to x at time 3 overwrites the value assigned to x at time 1.

In Example 7, the fork … end code statements (line 1 - line 5) run in parallel 
with the other code statements in the same model. Within the fork … end code 
statements, the variable a is assigned a value of 0 at time 0 (line 2). At time 3 
(line 4), it is given a value of 5. Between time 0 and 3, the variable a takes the 
value 0 assigned at time 0.
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The code statements outside the fork … end block share the same model time 
axis with the variable a: as time passes by 1 unit (theta 1 at Line 8), x is as-
signed the value of a at time 1, i.e. x = 0 (line 9); after another 2 time units 
(theta 2 at line 10), x is again given the value of a at time 3, i.e. x = 5 (line 11). 
The assignment to x at time 3 overwrites the assignment to x at time 1, i.e. after 
time 3, x = 5. However, between time 1 and 3, x is still equal to 0. 

Figure 5 illustrates the code statements in Example 7 in graphical form.

 
Note: If two ThetaML expressions are defined at the same model time, the 
coding order of the expressions determines their order in model time.
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Another fork … end example:

Example 8:

1:  % the first thread
2:  fork
3:   theta 1  % 1 time unit passes from time 0
4:   a = 1  % at time 1, a = 1
5:  end

6:  % a second thread, executed after the first thread
7:  fork
8:   theta 1  % 1 time unit passes from time 0
9:    % at time 1, a = 2, this overwrites 
    % a = 1 in the first thread
10:   a = a + 1 
11:  end 
12: 
13:  % a third thread, executed after the second thread
14:  theta 1  % 1 time unit passes from time 0
15:  x = a   % at time 1, x is assigned the 

    % value of a = 2

In the above example, the three threads run in parallel in model time. The first 
two threads have different values for the variable a at time 1. The second thread 
(line 7 - line 11) builds upon the latest value of a which is a = 1 (line 4) in the 
first thread, then increments it by 1 to have the result a = 2. A third thread (line 
14 - line 15) after the two fork … end blocks could only see the latest value as-
signed by the second thread (a = a + 1 at line 10), thus it returns the value of 
2 to x (line 15).
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3.6 The if … else … end Statement

As with other programming languages, ThetaML allows conditional evaluations 
using the if … else … end statement. 

The if … else … end statement:

 if <condition>
  ...
 else 
 ...

 end

If the if condition evaluates to be true, the statements after if and before else 
are executed. Otherwise, the else branch is executed. 

In ThetaML, the nested if … else … end statement is as follows:

 if <condition>
  ...
 else 
   if <condition>

 ...
   else 

 ...
   end
 end
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ThetaML uses the following logical and relational operators:

|  %or
&  %and
>  %greater than
<  %less than

==  %is equivalent to

The relational operators (e.g. >, <, ==) precede the logical operators (e.g. &, |), the 
& operator precedes the | operator. Relational operators do only pairwise com-
parisons, e.g. a > b or x < y, but statement like a > b > c is not allowed. In the 
statement a > b & c > d | x > y, the relational comparisons a > b, c > d and 
x > y are evaluated first, then the part a > b & c > d is evaluated, finally a > b 
& c > d | x > y is evaluated.

The following examples assign a value to the variable x under certain conditions:

Example 9:

...

r = randn() % sample a standard normal random variable

if r < 0 | r > 1 %’or’ comparison
  x = 1
else
  x = 2
end

x = 0
if r > 0 & r < 0.1 %’and’ comparison
  x = 1
end
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Example 10:

if a > 1 | b < 10 %’or’ comparison
 x = 1

end

Example 11:

if a > 1 
  if b < 10
   x = 1
  else
   x = 2
  end
end
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3.7 Array in ThetaML

We can define an array in ThetaML in several ways. 

Arrays can be defined in Matlab6 style, using the range operator 

 [from : to] 
or 
 [from : stepSize : to].

Examples:

% S is an array of length 5; 
% it ranges from 1 to 5, 
% with increments of 1
n = 5 

S = [1:n] 

or

% S is an array of length 50, 
% ranging from 1 to 50, 
% with step size 0.5
n = 50 
S = [1:0.5:n] 

Array dimensions are fixed at compile time.

Array can also be defined by direct assignment

% S is an array of length 4, with values 1,2,3,4

S = [1, 2, 3, 4] 

6 Matlab is a registered trademark of The MathWorks Inc.
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In this case, the compiler automatically detects the length and type of the array S.

In cases when the compiler cannot detect the array type (which occurs rarely), ar-
ray can be declared using the type keyword after the import/export statements:

 type stocks float[10]

The array stocks is of float type with size 10. Note the size of the array in the square 
bracket has to be a literal constant number, such as 10 in the above example.

In ThetaML, array elements are accessed with C-style square brackets [] after the 
array name. Unlike C and like Matlab, ThetaML array indexes start at 1.

Example of array indexing in ThetaML:

 A = [1, 2, 3, 4]
 X = A[1] + A[3]  % A[1] = 1, A[3] = 3, 

  % and X = A[1] + A[3] = 1 + 3 = 4

The assignment = operator is applicable to array types. An array can be assigned 
to another array. A scalar value can also be assigned to an array, in which case 
each element of the array takes the same value as the assigned scalar value. 

Examples of array assignment are given below: 

Example 12:

 % A is automatically an array of the same length 
 % and with the same values as B
 B = [1, 2, 3, 4]  % the elements of B are float numbers

 A = B  % element-by-element array assignment 



P a g e  | 68

Example 13: 

 % A is an array with length n
 A = [1:n]  % A is an array of length n
 A = 1  % equivalent to A = [1,…,1], 

  % i.e. n numbers of 1

Example 14:

 % A is an array of type float with length 4. 
 % It is explicitly defined using the keyword type after 
 % the import/export statements

 type A float[4] % A is an array of float with length 4
 
 b = 1  % b is of type float
 A = b  % equivalent to A = [1, 1, 1, 1]

The numeric types are of double precision floating-point numbers in the above 
examples. In Example 13, if the length of the array n is a floating-point number 
with decimal points, the value of n is rounded down to the nearest integer value. 
For example, if n is 10.2, the length of the array A is actually 10. If n takes the value 
of 10.8, the length of the array A is also 10. The length of an array can be obtained 
using the length() function in ThetaML Script. Details on the length() function 
can be found in section 3.12.3.
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3.8 The loop … end Statement

Repeated executions can be achieved using the loop … end statement. The loop 
statement requires a length parameter that must be set at compile time. The pa-
rameter defines the type of loops. It can be an integer for a finite number of itera-
tions, or the keyword inf, where the loop runs as long as the model is run. The 
loop statement can also take an array as a parameter, in which case the loop will 
iterate over the elements of the array.

3.8.1 Fixed Length Loop 

Fixed length loops are defined by a loop command followed by the number of 
iterations. 

The fixed length loop statement:

 loop <number of cycles>
   ....

 end

Variables are initiated at the start of the loop.

A fixed loop … end example:

Example 15:

1: x = 5   % x is initialized with value 5
2: loop 5   % loop 5 times
3:  x = x + 1   % increment the value of x by 1 at each loop

4: end
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In Example 15, the variable x is initialized with a value of 5 (line 1), then it goes 
though a loop 5 times (line 2 - line 4) and is assigned a final value of 10.

The following example uses a fixed loop to update the process y up to time t:

Example 16:

 1:  t = 1  %time horizon
 2:  ht = 0.3  %time step 
 3:  y = 1  %initial value of y

 4:  % a fixed loop of length floor(t/ht), where floor() 
 5:  % means round down to the nearest integer value
 6:  loop t/ht 

 7:   % time passes by ht time step
 8:   theta ht

 9:   % update y for the time step ht
10:  y = y * exp( -0.05 * ht ) 
11: end

12: theta t - @time
13: y = y * exp( -0.05 * @dt ) 

In Example 16, the variable y is initialized at 1 (line 3), it is then updated during the time 
steps until time t with the fixed loop loop … end. The fixed loop length is the value of t/
ht rounded down to the nearest integer value, i.e. 3. The numerator t and the denomina-
tor ht are of float type, since in ThetaML numeric types are floating-point numbers. Line 
8 passes ht time using the theta command. Line 10 updates the value of y for the time 
step ht. After 3 loops with each loop progresses time by 0.3, the time remaining till time 
t is 0.1 (1 - 3*0.3). Line 12 creates the residual time step which is required to step from 
the current model time to time t (t - @time =1 - 3*0.3 = 0.1). The @dt parameter at line 
13 extracts the residual time to the next model time point t, i.e. @dt = t - @time = 0.1.



P a g e  | 71

3.8.2	 Infinite	Length	Loop	loop inf … end

When using inf as the loop length, the loop is run until all other threads (sharing 
the same model time axis) with fixed-length loops have finished their iterations. 
This is useful when computing time series of an arbitrary length or when writing 
subroutines for financial products whose lifetime is automatically extended to 
the desired length depending on a specific pricing application.

The infinite loop statement:

 % unbounded loop ...
 loop inf 
  theta @dt % passes an arbitrary time
 end

or

 % unbounded loop ...
 loop inf
  theta <time interval> % passes explicit time step
 end

A stand-alone loop inf … end example where the loop runs forever:

Example 17:

 x = 0  % initialize x with 0
 %infinite loop
 loop inf 
  x = x + 1 % increment the value of x by 1
  theta @dt % passes time by @dt time unit
 end
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An example of loop inf … end where the loop length is determined by a fixed-length 
loop sharing the same model time axis:

Example 18:

   % fork … end block, runs parallel with other code blocks
 1: fork
 2:  y = 0   % initialize y at 0

 3:  % infinite loop, it stops when the fixed loop below stops 
 4:  loop inf 
 5:  theta 1   % time passes by 1 unit from time 0
 6:  y = y + 1  % increment y by 1 each time
 7:  end
 8: end

 9: % loop 2 times, this loop runs parallel with fork … end block
10: loop 2 
11:  theta 3   % each loop passes time by 3 units
12: end
13:
14: x = y    % time is now at 6, x = 6

In Example 18, the fork … end block (line 1 - line 8) runs in parallel with the 
loop … end block (line 10 - line 12) that follows it. Since the two blocks share 
the same model time axis, the infinite loop loop inf … end (line 4 - line 7) 
within the fork … end block runs until the fixed length loop (line 10 - line 12) 
stop running, in this case, the loop runs 2 times. After 2 loops with each loop 
passing by 3 time units, both loops stop at time 6. The value of y is initialized 
at 0 (line 2) and is incremented by 1 after each time unit (line 6). After 6 loops, y 
has the value 6. At time 6, x is assigned the value of 6 (line 14). 

Note: In the same timing model, the infinite loop loop inf runs until all other 
fixed length loops stop running. 
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3.8.3 Array Looping

Loops can be used to iterate over arrays, much like the for … each statement in many 
other programming languages. Loops over an array repeat the loop body once for ev-
ery component of the array. For loops over arrays, the loop keyword is followed by a 
variable that serves as an iterator for each array component, then a colon “: ” followed 
by the array to be cycled. The iterator points directly to the array element, so opera-
tions on the iterator are in fact operations on the corresponding element of the array. 
The keyword indexOf()returns the matching index of the element of the array. 

The array loop statement:

loop array_iterator : array
  % loop body 
  index = indexOf(array_iterator) 
end

An example for a loop over an array: 

Example 19:

 % define the array A
 A = [1, 2, 3, 4] 
 
 % ’a’ serves as an iterator for the array A
 loop a : A  % loop through the array A
  a = a^2  % square the value of the array element denoted by a
 end  % after the loop, A = [1, 4, 9, 16]

In Example 19, the loop cycles over the elements of the array A and squares the 
value of each of its elements. Note that the array A is defined in the model body. In 
cases when an array is imported into the model, the values of the input array can 
not be changed inside the model.
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3.8.4 Multiple Array Looping

Loops in ThetaML can simultaneously cycle over multiple arrays, given that the 
arrays are of the same length. An iterator is defined for each array so that at the 
nth cycle of the loop each iterator points to the nth element of its corresponding 
array. Additionally, it is possible to iterate over a previously undefined array, in 
which case the size of the undefined array is determined by the size of other ar-
rays within the same loop. This allows the user to build an array on the fly.

The following is an example for loop over multiple arrays. 

Example 20:

 1: % define the array A
 2: A = [1, 2, 3, 4]

 3: % define the array B
 4: B = [1, 2, 2, 2]

 5: % loop through the elements of array A and B, and 
 6: % build a new array X. a, b, x serve as array iterators 
 7: loop a, b, x : A, B, X 
 8:  % sum up the values denoted by a and b, and assign
 9:  % the value to the element denoted by the iterator x
10:  x = a + b 
11: end
12: % after the loop, X = [2, 4, 5, 6]

In Example 20, arrays A and B are both of size 4. The loop cycles over each ele-
ment of the arrays (line 7). The variables a and b serve respectively as iterators 
for arrays A and B. The variable X is previously undefined and is automatically 
determined to be an array with the same length as arrays A and B. The elements of 
X take their values in the loop body via the statement x = a + b (line 10).
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Equivalently, the above loop could be replaced by the statement X = A + B. Array 
assignment, addition, subtraction, multiplication and division are supported in 
ThetaML. Array multiplication and division are performed element-wise, involv-
ing no matrix math.
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3.9 Calling A Sub-model

Sub-model refers to the model called by other model(s). Sub-models can be called 
with a call statement in a ThetaML model. When using a call statement in Thet-
aML, the called sub-model must be supplied with all the arguments as required by 
its import statements. Values exported by the sub-model can be optionally import-
ed by the calling model. All arguments in ThetaML are passed similar to passing by 
reference. Hence not only static values but also processes whose values change in 
time can be passed to called sub-models.

The call command:

call <model name>
  export <local variables> 
  import <remote variables>

or

call <model name>
  export <local variables> to <remote variables> 
  import <local variables> from <remote variables>
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Implicit fork … end

In ThetaML, a model call is implicitly a statement within a fork … end block, i.e. 

 call <model name>
  export <local variables> 
  import <remote variables>

is equivalent to

  fork 
   call <model name>
  export <local variables> 
  import <remote variables>
  end

The implicit fork … end enables the processes imported from the called model to 
run virtually parallel in model time with processes in the calling model.

Note: In ThetaML, model call is implicitly within a fork … end.

The following examples show how to call a model in ThetaML. 

Example 21:

1: % the sub_model is called by another model
2: call sub_model
3:  export a, b  % export the local variables a, b
4:  export a + b to c % export a + b to the remote variable c
5:  import x, y  % import the remote variables x, y
6:  import z from x + y  % import in the local z from x + y
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In example 21, the sub_model imports (reads) the variables a, b and c and ex-
ports (returns) variables x and y. 

When the model sub_model is called by another model, the calling model exports 
its parameter variables a and b to the corresponding variables a and b in sub_
model (line 3). It also exports a + b to the variable c in sub_model (line 4). 
The calling model in turn imports the variables x and y returned by sub_model 
(line 5), and also imports (creates) a variable z from x + y (line 6).

When calling a sub_model, if the variables passed by the calling model have dif-
ferent names from those in the sub_model, we add the keyword to in the export 
statement and the keyword from in the import statement. Specifically, we export 
the local variables to the corresponding variables in the sub_model, and we im-
port (or create) local variables from the variables exported by the sub_model.

Example 22:

Suppose now we wish to call a sub_model from another model.

  % the sub_model is to be called later by other models
 1:  model sub_model
 2:   import x “Step size”
 3:   export y “Incremented process”
 4: 
 5:   y = 0  % initialize y at 0
 7:   loop inf  % infinite loop
 8:    theta 1  % time passes by 1 time unit
 9:    y = y + x  % increment the process y by a step size x
10:   end
11:
12:  end

The above sub_model imports the variable x as a step size (line 2), and uses it to 
increase the process y that is initialized at 0. The sub_model returns the result in 
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the variable y after every passing time unit (theta 1 at line 8) and for all units 
of time (loop inf).

In our calling model, we set a step size x = 1 (line 1), then call the sub_model by 
exporting x to it (line 5) and read the result back in the variable y by importing 
from the sub_model (line 8). 

 % a calling model that calls the sub_model
 1:  x = 1 % set the step size x = 1
 2:  call sub_model % call the sub_model
 3:  % export the local variable x to the corresponding x 
 4:  % in sub_model
 5:  export x
 6:  % import the values for the local variable y 
 7:  % from the corresponding y in sub_model 
 8:  import y
 9:
10:  % result: y ~ 0 - 1 - 2 - 3 - ...

Equivalently, we can call the sub_model by directly exporting a value of 1 to x (line 
4) and reading the result back in a variable A (line 7) as follows:

 %a calling model that calls the sub_model
 1: call sub_model
 2:  % export the value 1 to the variable x 
 3:  % in sub_model
 4:  export 1 to x
 5:  % import in (create) the local variable A the values 
 6:  % from the y returned by the sub_model
 7:  import A from y
 8:
 9: % result: A ~ 0 - 1 - 2 - 3 - ...
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Example 23:

This example shows the power of passing processes as model arguments. We can 
call our sub_model once to first create a time series equivalent to either y or A in 
example 22, and thereafter use this process as an input argument for the step size 
of a second process.

  % call the sub_model to create a process y with 
  % a time step of 1
  call sub_model
   export 1 to x  % export 1 to the variable x in sub_model
   import y   % import the returned values in a local 
      % variable y
  %result: y ~ 0 - 1 - 2 - 3 – 4 – 5 - ...

  % call the sub_model again to export the just 
  % created y process as the changing step size for another 
  % process which is imported as A 
  call sub_model
   export y to x  % export y to the variable x in sub_model
   import A from y  % import the returned values in a local 
      % variable A

  %result: A ~ 0 - 1 - 3 - 6 - 10 - 15 - ...



P a g e  | 81

We now show a complete example of a model call in ThetaML.

Example 24:

1: model calling_model
2:  export y
3:
4:  % the value of z is imported from sub_model; y = 100
5:  y = z! 
6:  call sub_model 
7:   % export 10 to x in sub_model 
8:   export 10 to x 
9:   % import in z the values (100) from y in sub_model 
10:   import z from y 
11:
12: end

13: model sub_model
14:  import x
15:  export y “x squared”
16:
17:  y = x^2
18:
19: end 

In example 24, the calling_model calls the model sub_model, and exports a value 
of 10 to the x in sub_model (line 8), then imports in z the value of y = x^2 (line 
10). In the calling_model, the future operator “!” accompanying the variable z 
(line 5) accesses the value of z imported next from the sub_model (line 10), and 
assigns it to y (line 5).
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3.10 Matlab Native Access 

It is one of the design principles of ThetaML to transparently provide access to the 
functionalities of the target language. Our main target host language is Matlab. 
There are two main mechanisms in ThetaML that provide accesses to Matlab:

	 Calling Matlab functions 
A Matlab function call maps a number of input parameters to one output 
parameter. It takes the simple form of y = f(a, b, …) in ThetaML.

Matlab function calls have the following properties: 

• No internal state 
• No global variables allowed

	 Calling Matlab complex stepping object 
The complex stepping object is implemented in native Matlab m-code. 
It may have an internal state and usually has a behavior depending on 
model time. 

Because this called complex stepping object steps through model time 
along with other processes in the calling ThetaML model, this object is 
also known as stepping function. 

A complex stepping object has the following properties:

• The object has an internal state. 
• The object can import other processes. 
• The object can have construction parameters. 
• All variables and their stochastic dependencies must be inspectable 

through the Application Programming Interface (API). 



P a g e  | 83

3.10.1 Calling Matlab Functions

Matlab functions can be called in ThetaML by directly typing their function names. 
Only one variable can be returned by a function and the parameters of the func-
tion are only defined in terms of the elements of a vector or matrix.

The following example ThetaML calls a MATLAB function atan: 

 x = 1

  y = atan(x) 

if Matlab is the default backend; otherwise the explicit form 

  x = 1 

  y = @matlab : atan(x) 

must be used. 

User-defined Matlab m-files must be vectorized before they are called in Thet-
aML, the m-files must be located on the Matlab path.

Note: When Matlab functions are accessed in ThetaML, they must be vector-
ized. This is to ensure smooth handling of different Monte Carlo paths in the 
first dimension of each variable used in a ThetaML model.
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An examples of nonvectorized versus verctorized Matlab functions:

% function not vectorized
function result = f_nonvectorized(x)
  result = scalarFunction(x);
end

%simple vectorized function 
function result = f_vectorized(x)
  result = zeros(size(x,1), 1);
  for i = 1:size(x,1)
   result(i) = someFunction(x);
  end
end

%function vectorized using Matlab matrices
function result = f_vectorizedMatlab(x, y)
  result = x .* y + randn(size(x));
end
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3.10.2 Calling a Complex Stepping Object 

The link to a Matlab stepping object (stepping function) is made explicitly by call-
ing the Matlab stepping object with a ThetaML command: 

 call @matlab : <stepping function>
  export <local variables> 
  import <remote variables>

or
 call @matlab : <stepping function>
  export <local variables> to <remote variables> 
  import <local variables> from <remote variables>

The called stepping object allows many sophisticated interactions but it must 
implement in Matlab the methods listed in Table 1. 

Method Description

Init() Reset the model to its initial state (this method is optional)

Step(dt) Proceed the model by time dt. Throw random numbers if 
required

SetValues(name, value) Set a state variable with name to the new value

GetValues(name) Get the value of a variable name computed by this model

GetModelVariables() Give a list of imported and exported variables for this mode

Table 1. Methods for the Matlab stepping object.
Column 1 lists the methods that must be implemented for the complex stepping object, column 2 gives a 
short description for the methods.
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The general function header for the Matlab stepping object consists of method 
definitions and a construction from a Parameters object. This type of object inter-
actions only works for Monte-Carlo evaluations. The structure of the Parameters 
object is guaranteed to contain at least one field: NoOfScenarios, with the number 
of Monte-Carlo paths as its parameter value. 
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Below is a general function header for the Matlab stepping object:

% Function header for the complex stepping object.
% The function takes a ‘Parameters’ object as argument, 
% and returns a struct ‘model’
function model = ModelName(Parameters)

% The following struct fields must be implemented in this
% function and must return the function handles with ‘@’ 
% notation. 
model.Step  = @Step; 
model.SetValues  = @SetValues; 
model.GetValues  = @GetValues;
model.GetModelVariables  = @GetModelVariables;
model.Init  = @Init; % (optional)
 
if nargin > 0
  %construct the object 
else
  %construct an empty object for import variable inspection
end
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The model variable(s) returned by the GetModelVariables method must be a structure 
with fields for each relevant variable. Each field must have, for each variable, the sub 
fields listed in Table 2. 

comment A human readable description of the roles of the variables in the model

Visibility
The flag Visibility can be set to import or export, it determines 
whether the variable is imported as an input argument or exported as an 
output variable returned by the model 

IsState
For export variables, this Boolean flag indicates whether the variable is 
part of the minimal Markov state which is required to make a best guess 
for the future value of all exported variables

Size / Type

The flag Size indicates the dimension of a model variable, excluding the 
scenario dimension. 

For non-numeric types†, the Type field can be set to ‘Object’ or 
‘String’7. Import variables can also have their Type set to ‘File’8 

which indicates that the value must be the Uniform Resource Identifier 
(URI) of an existing file

Table 2. Sub-Structure Fields for the GetModelVariables Method
The sub-structure fields are listed in column 1, their respective descriptions are given in column 2.
† For details on variable types in ThetaML, please refer to Chapter 4.

7 Object and String  are ThetaML internal type.
8 File is a ThetaML type.
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To guarantee the correctness of the generated code, it is critical that the internal 
state of the object can be inspected as relevant. All variables that can be used to 
infer the stochastic properties of the variables must be made explicit. Addition-
ally, variables can be marked as being part of the minimal Markov state by setting 
IsState = true. By minimal Markov state we mean that the variables satisfy the 
Markov property and that with minimal amount of representative information, it 
is sufficient to make best guesses for the future state. A Visibility setting can 
hide a variable from its explicit use in ThetaML. 

Below, there are some examples for Matlab stepping functions and use of the Mat-
lab stepping functions in ThetaML.
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Example 25: 

We start with a simple option pricing example that uses a Matlab stepping func-
tion to short-step the stock price process. Copy the following model into a new 
Matlab file and save it under the name GBMModel.m.

  % The Matlab function GBMModel takes a ‘param’ object as 
  % argument, and returns a Matlab struct ‘model’ 
 1:  function model = GBMModel(param)
 2:  % The following struct fields must be implemented in this
 3:  % function and must return the function handles with ‘@’
 4:  % notation.
 5:  model.Step  = @Step;
 6:  model.SetValues  = @SetValues;
 7:  model.GetValues  = @GetValues;
 8:  model.GetModelVariables  = @GetModelVariables;
 9:  model.Init  = @Init; % optional function
10:
11:  % if the number of function arguments is larger than zero
12:  if nargin > 0 
13:  % remember initial values of imports stored in ‘param‘
14:  model.vola = param.vola;  %stock price volatility ‘vola’
15:  model.r = param.r;   %risk-free interest rate ‘r’
16:  model.S0 = param.S0;  %initial stock price ‘S0’
17: 
18:  % prepare initial values for exports
19: % initialize stock prices 
20:  model.S = param.S0 * ones(param.NoOfScenarios,1);
21:  % initialize discount factors
22:  model.Discount = ones(param.NoOfScenarios,1);
23:  end
24: 
25:  % this function returns a struct ‘vars’ with fields and 
26:  % subfields for all relevant variables
27:  function vars = GetModelVariables
28:  % create a struct for ‘S’, set: the field value for
29:  % ‘comment’ to ‘Stock price’, the field value for 
30:  % ‘Visibility’ to ‘Export’, and the field value for
31:  % ‘IsState’ to ‘true’. ‘S’ is itself a field of the
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32:    % struct ‘vars’ 
33:  vars.S = struct (‘comment’, ‘Stock price’, ...
34:    ‘Visibility’, ‘Export’, ...
35:    ‘IsState’,true);
36:  % create a struct for ‘Discount’
37:  vars.Discount = struct (‘comment’, ...
38:    ‘Discount process’, ...
39:    ‘Visibility’, ‘Export’, ...
40:    ‘IsState’,false);
41:  % create a struct for ‘vola’
42:  vars.vola = struct(‘comment’,’vola’, ...
43:    ‘Visibility’,’Import’);
44:  % create a struct for ‘S0’
45:  vars.S0 = ...
46:   struct(‘comment’,’S0’,’Visibility’,’Import’);
47:  % create a struct for ‘r’
48:  vars.r = struct(‘comment’,’Interest rate’, ...
49:  ‘Visibility’, ‘Import’);
50:  end
51:  % set the value of ‘var’ to ‘value’
52:  function SetValues(var, value)
53:  model.(var) = value;
54:  end
55:  % get the values of ‘varName’ 
56:  function X = GetValues(varName)
57:  X = model.(varName);
58:  end
59: 
60:  % this function steps the process S for the time step dt
61:  function Step(dt)
62:  % Geometric Brownian motion for stock price process ‘S’
63:  model.S = model.S .* ...
64:  exp( (model.r - 0.5 * model.vola^2) * dt...
65:  + sqrt(dt) * model.vola * ...
66:  randn(size(model.S)));
67:
68:  % constant interest rate ‘r’ as the decaying rate
69:  model.Discount = model.Discount * exp(- model.r * dt);
70:  end
71: 
72: end
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In the Matlab function GBMModel, the function header consists of the name of the 
function GBMModel, the input argument object param, and the returned struct 
model. 

Line 5 - 9 define the fields of the struct model. The fields of the model are embed-
ded functions defined next in the function GBMModel. The function @Init at line 9 
is optional.

The if block in line 12 - 23 initialize the parameter values if the number of func-
tion arguments is larger than zero.

The embedded function GetModelVariables (line 27) takes no arguments and 
returns a struct of variables vars. The first state variable S in the struct vars has 
subfields: comment with value ‘Stock price’, Visibility with value ‘Export’, 
and IsState with value true. The parameter Discount is also a struct, it has sub-
fields: comment with value ‘Discount process’, Visibility with value ‘Ex-
port’, and IsState with value false. The constants vola, r and S0 are structs 
with similarly valued fields. The subfield Visibility has value ‘Import’ or ‘Ex-
port’ depending on whether the variable is an import parameter or an export 
parameter. If the subfield IsState of a variable is set to the value true, the vari-
able is part of the minimal Markov states. In this function, the state variable S is 
marked as part of the minimal Markov states which are used to make best esti-
mates about the future state.

The embedded function SetValues sets the state variable named var to value. 
The state variable var can take many values. 

The embedded function GetValues returns the values of varName. 

The embedded function Step progresses the stock prices S and updates the dis-
counting process Discount, for a time step of dt. It is this function that enables 
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the struct model to have a behavior depending on model time when called by a 
ThetaML model.
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Next, we call the GBMModel.m in a ThetaML model that prices an Asian option; the 
ThetaML model is given below:

  % This ThetaML model prices a fixed strike Arithmetic Asian 
  % Call option. It calls the Matlab stepping function 
  % GBMModel to short-step the stock price process and the 
  % discount factors 
 1: model callGBM
 2: % This model exports a stock price process ‘S’, a discount 
 3: % factor process ‘CUR’, and the simulated Asian Call option 
 4: % prices ‘AsianOption_CUR’ 
 5:  export S  “Stock price process”
 6:  export CUR “Discount process denominated in currency CUR”
 7:  export AsianOption_CUR “Present values of an Asian option”
 8: 
 9:  % call the Matlab stepping function GBMModel
10:  call @matlab:GBMModel
11:  export 0.4 to vola  % export the value 0.4 to ‘vola’
12:  export 100 to S0  % export the value 100 to ‘S0’
13:  export 0.05 to r  % export the value 0.05 to ‘r’
14:  % import in the local variable ‘S’ the values of the
15:  % remote variable ‘S’ returned in the function
16:  % GBMModel
17:  import S from S 
18:  % import in the local variable ‘CUR’ the values of 
19:  % the remote variable ‘Discount’ returned in the 
20:  % function GBMModel
21:  import CUR from Discount
22:
23:  Average = 0 % initialize the arithmetic ‘Average’ to 0
24:  loop 10  % loop 10 times
25:  theta 1/10 % time passes by ‘1/10’ time units
26:  % update the arithmetic ‘Average’
27:  Average = Average + S/10 
28:  end
29:  % Asian Call option payoffs, discounted to time 0 by
30:  % the discount factors ‘CUR’
31:  AsianOption_CUR = max(Average - 100,0) * CUR
32: end
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After running this model in Theta Suite with the number of Monte-Carlo paths set 
to 10,000, we obtain the mean value 11.243 for AsianOption_CUR.

In the model callGBM, line 5, line 6 and line 7 respectively exports the stock 
price process S, the discount factor process CUR, and the simulated Asian Call op-
tion prices AsianOption_CUR. 

In ThetaML, model calls implicitly create a fork. i.e., the called model bodies are 
executed virtually parallel with other code blocks in model time. Calls of exter-
nal Matlab models implemented with the Step(dt)9 method has a model time 
behavior, which means that it steps through model time along with other pro-
cesses in the calling ThetaML model. In this case, the Matlab stepping function 
GBMModel has an embedded Step(dt) function (line 61 in the function GBMModel). 
The Step(dt) function is interpreted by the ThetaML compiler as if a theta @dt 
command were passed. The theta @dt command enables model time passing at 
an arbitrary time interval, meaning the parameter @dt extracts the time interval 
to the immediate next model time point. 

From the called Matlab function GBMModel, we import the stock price process in S 
(line 17) and the discount factor process in CUR (line 21). 

Next, line 23 to 28 computes an arithmetic average Average based on the stock pric-
es on a set of fixed times (1/10, 2/10, …, 1), spaced at constant time interval 1/10.

At option maturity time (line 31), the fixed strike Asian Call option payoffs are de-
fined and discounted to time 0 using the discount factors CUR. Discounting future 
cash flows to time 0 is a convention we very often use in ThetaML models, so that 
we always talk about future cash flows in present value terms.

9 For a description of the Step(dt)method, please refer to section 3.10.2.
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Example 26: 

Another example Matlab stepping function ExternalModule is shown below: 

  % The function ExternalModule takes a ‘param’ object as 
  % argument, and returns a Matlab struct ‘model’
 1:  function model = ExternalModule(param)
 2:
 3:  % the following are fields for the struct ‘model’
 4:  model.GetModelVariables  = @GetModelVariables;
 5:  model.GetValues  = @GetValues;
 6:  model.SetValues  = @SetValues;
 7:  model.Step  = @Step;
 8:  % initialize relevant parameter values
 9:  if nargin > 0
10:  model.vola = param.vola;
11:  model.Discount = param.Discount;
12:  model.S0 = param.S0;
13:  model.S = param.S0*ones(param.NoOfScenarios,2);
14:  end
15:  % this function returns a struct ‘vars’ with fields 
16:  % and subfields for all relevant variables
17:  function vars = GetModelVariables
18:  % S has a description string ‘Stock price’
19:  vars.S.comment = ‘Stock price’;
20:  % S is exported as output and is visible to the 
21:  % calling ThetaML model
22:  vars.S.Visibility = ‘Export’; 
23:  % S is marked as part of the minimal Markov state 
24:  vars.S.IsState = true; 
25:  % S has two dimensions: the first dimension is the
26:  % number of Monte-Carlo Scenarios, the second is the
27:  % number of stocks
28:  vars.S.Size = 2;
29:  % create struct fields for ‘S2’
30:  vars.S2.comment = ‘Double Stock price’;
31:  vars.S2.Visibility = ‘Export’; 
32:  vars.S2.IsState = false; 
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33:  vars.S2.Size = 2;
34:  % vola is an imported parameter, and is visible to the
35:  % calling ThetaML model
36:  vars.vola = struct(‘comment’,’vola’, ...
37:  ‘Visibility’,’Import’);
38:  vars.S0 = struct(‘comment’,’S0’, ...
39:  ‘Visibility’,’Import’);
40:  vars.Discount = struct(‘comment’,’Discount’, ...
41:  ‘Visibility’,’Import’);
42:  end
43:  % sets the value of state variable ‘var’ to ‘value’
44:  function SetValues(var, value)
45:  model.(var) = value;
46:  end
47:  % gets values for the argument string ‘str’
48:  function X = GetValues(str)
49:  % if the string argument ‘str’ is the same as ‘S’
50:  if strcmp(str,’S’)
51:  % assign the discounted prices of S to X
52:  X(:,1) = model.S(:,1) .* model.Discount;
53:  X(:,2) = model.S(:,2) .* model.Discount;
54:  elseif strcmp(str,’S2’)
55:  X = 2*GetValues(‘S’);
56:  end
57:  end
58:  % this function steps the process S for the time step dt
59:  function Step(dt)
60:  model.S = model.S + param.vola .* sqrt(dt)… 
61:  *randn(size(model.S));
62:  end
63:
64:  end

In the Matlab function ExternalModule, the function header consists of the name 
of the function ExternalModule, the input argument object param, and the re-
turned struct model. 

Line 4 - 7 define the fields of the struct model. The fields of the model are embed-
ded functions defined next in the function body. 
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The embedded function GetModelVariables (line 17) takes no arguments and 
returns a struct of variables vars. The first state variable S in the struct vars has 
subfields: comment with value ‘Stock price’, Visibility with value ‘Export’, 
IsState with value true, and Size with value 2. The second state variable S2 in 
the struct vars has subfields: comment with value ‘Double Stock price’, Vis-
ibility with value ‘Export’, IsState with value false, and Size with value 
2. The constants vola and S0 are structs with similarly valued fields. The pa-
rameter Discount is also a struct and is imported as a process parameter. The 
subfield Visibility has value ‘Import’ or ‘Export’ depending on whether the 
variable is an import parameter or an export parameter. If the subfield IsState 
of a variable is set to the value true, the variable is part of the minimal Markov 
states. In this function, the state variable S is marked as part of the minimal Mar-
kov states, while the state variable S2 is not. This is because the double stock 
price S2 contains virtually the same amount information as what is already in S. 
As such, including S only is enough to make best guesses about the future state.

The embedded function SetValues sets the state variable named var to value. 
The state variable var can take many values. The embedded function GetValues 
is a simple recursive function, the if condition compares the string argument str, 
if it evaluates to ‘S’, the function returns a two-dimensional stock prices S. If it 
evaluates to ‘S2’, the function calls itself (line 55) and returns a two-dimensional 
double stock prices S2.

The embedded function Step progresses the stock prices S for a time step of dt. 
It is this function that enables the struct model to have a behavior depending on 
model time when called by a ThetaML model.

The stepping function ExternalModule is called in ThetaML by the command 

  call @matlab : ExternalModule
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The ThetaML model packOrder illustrates the use of the Matlab stepping function 
ExternalModule:

  % The ThetaML model ‘packOrder’ calls the Matlab stepping 
  % function ‘ExternalModule’. The processes ‘S’ and ‘S2’ in 
  % the called ‘ExternalModule’ runs virtually parallel with 
  % other processes in the calling ThetaML model ‘packOrder’
 1:  model packOrder
 2:  % This model exports the values of a stock portfolio ‘V’, a 
 3:  % discount factor process ‘Discount’, and stock prices ‘S’
 4:  import r “Constant interest rate”
 5:  export V, Discount, S
 6:
 7:  % a fork … end block
 8:  fork
 9:  % initial value of the discount factors
10:  Discount = 1
11:  % infinite loop
12:  loop inf 
13:  % time passing of @dt time interval 
14:  theta @dt
15:  % update the discount factors
16:  Discount = Discount * exp( -r * @dt )
17:  end
18:  end
19:  % call the Matlab function ‘ExternalModule’
20:  call @matlab : ExternalModule 
21:  export Discount % export the Discount factor process
22:  export 100 to S0 
23:  export 0.4 to vola
24:  import S2, S % import the processes S2 and S
25:  % a fixed loop of length 10
26:  loop 10
27:  % time passing of 1 time unit
28:  theta 1
29:  % the values of V! wait to be decided later
30:  V = 0.5 * E(V!) + 0.5 * S
31:  end
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32:  % V has the values of S2, V! at line 30 references this V 
33:  V = S2
34:  end

In the model packOrder, line 4 imports a constant interest rate r. Line 5 exports 
the values of V, the discount factors Discount, and stock prices S. 

The fork … end block (line 8 - line 18) runs in parallel with the other processes 
outside the fork block, i.e. the called external Matlab model (line 20 - line 24) 
and the fixed-length loop loop … end (line 26 - line 31). 

Calling the Matlab function ExternalModule implicitly creates a fork. The func-
tion ExternalModule has an embedded Step(dt) function that steps forward the 
stock price process and the discount factor process in model time along with oth-
er processes in the model packOrder.

The implicit fork around the fixed loop loop … end enables the processes inside 
the loop run virtually parallel in model time with other processes. 

Within the fork … end block, the discount factor Discount is initialized at 1, then 
it enters an infinite loop loop inf and is discounted at a constant rate r at each 
time step @dt.

The infinite loop loop inf runs until the fixed loop (line 26 - line 31) stops 
running, i.e. it runs 10 times as well. The time interval parameter @dt extracts 
the model time interval 1 as passed by the theta command (line 28) within 
the fixed-length loop. The ThetaML compiler passes as well this time interval of 
length 1 to the dt parameter of the Step(dt)function in the called Matlab model 
ExternalModule. The called ExternalModule is supplied with the local process 
Discount, a value of 100 to S0, and a value of 0.4 to vola. The ThetaML model 
packOrder imports the two processes S and S2 from ExternalModule.
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The fixed loop loop … end (line 26 - line 31) repeats 10 times, each loop passes 
the time by 1 time unit (theta 1 at line 28). At each passing time step, the vari-
able V is updated at line 30. The variable V! at line 30 is referenced with the 
future operator “!”. The future operator “!” enables V at line 30 to access its 
future values. To evaluate the variable V, we start from line 33, where V = S2 at 
time 10 (10 loops with each loop passing by 1 time unit). Then we go backwards 
and update the values of V iteratively. Since there is no time passing between line 
30 and line 33, the variable V! at line 30 evaluates to the values of S2 at line 
33, the values for V at time 10 are updated as: V = 0.5 * E(S2) + 0.5 * S = 
0.5 *(S2 + S). We have this equality because S2 is known at time 10, as such 
E(S2) = S2. At time 9, the variable V! evaluates to the values of V at time 10 (i.e. V 
= 0.5 *(S2 + S)), the values for V at time 9 is: V = 0.5^2 * E(S2 + S) + 0.5 
* S2, where E(S2 + S) is the best guess of S2 + S conditional on the information 
at time 9. Continuing backwards, we arrive at the time 0 the values of V. 

Since in ThetaML process variables implicitly incorporate scenario and time in-
dices, the variables S, S2, Discount and V contain values for all the Monte-Carlo 
paths, as such we talk about the values of S, S2, Discount and V in plural forms. 

 
Note: The Matlab stepping function steps through model time along with the 
other processes in the calling ThetaML model.
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3.11 ThetaML Operators

The Future Operator “!”

A unique feature of ThetaML is the ability to access the values assigned to vari-
ables at future time points. This is achieved with the future operator “!” 10. 

Like other programming languages, ThetaML accesses the value of a variable that 
is pre-assigned. In cases where the code statements are not evaluated sequen-
tially, ThetaML can access ahead the value of a variable assigned at future time 
points. Access to the future value of a variable is enabled in ThetaML by the future 
operator “!”.

Example 27:

The following example assigns the next value of y = 3 to x. Any command that 
changes the value of y also changes the value of x.

% the future operator “!” acts like a function on y,

% as such the value of y! waits to be determined later

x = y! 
...

y = 3 % y has the value 3, and y! = 3

10 Note that circular definitions are not allowed in ThetaML.
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Example 28:

In some cases, no single instance can determine the value of a future-referenced 
variable. The value of the referenced variable is then determined as if the pro-
gram had been run in reversed command order.

1: x = y!   % result: x = 0 if a > 1, x = 2 otherwise
2: if a > 1
3:  y = 0  % if a > 1, y = 0, and y! = 0 
4: end
5: y = 2   % if a <= 1, y = 2, and y! = 2 

When y is future-referenced with the future operator “!” (y! at line 1), its value 
is temporarily undermined. The future operator “!” looks into the future instance 
when y has some definite value, this occurs at two instances: within the if block 
(line 3) and after the if block (line 5). If the if condition evaluates to be true, y 
= 0; otherwise, y = 2. The variable y then takes the correct value and assigns the 
value back to x.

Example 29:

A special case occurs when a future-referenced variable is evaluated as part of the 
if conditions. In such cases, future references consider only value assignments 
after the if … end block. This avoids cyclical definitions of variables.

1: x = y!   % x = 0
2: if y! > 1 
3:  y = 0
4: end
5: y = 2   % y has the value 2, and y! = 2 in the if condition

In the above example, the value of y! (in line 1) waits to be determined. The y! as 
part of the if condition (line 2) accesses its next value of y, which is y = 2 after 
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the if … end block (line 5). Since y! = 2 in the if condition statement, the if 
condition evaluates to be true, and the body of the if … end block is executed, i.e. 
y = 0 (line 3). As a result, the first y! access this value 0 and assigns x the value 0.

Below are some additional properties of the future operator “!”:

  a!! == a!
(a + b)! == a! + b!

 f(a)! == f(a!)
 a[i]! == a![i] (not a![i!])

  E(a) == E(a!)
Beta(a,b) == Beta(a!,b!)
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3.12 Functions

3.12.1 The Function E()

ThetaML evaluates the conditional statistical properties of variables or processes 
with ease and speed. This is realized with the function E(). The function E() com-
putes the conditional expected value of a variable, a process or an expression, 
conditional on all parameter values that are known at the corresponding model 
time. The arguments of the stochastic function are assumed able to access their 
future values assigned at future time points.

We use a simplified example to explain the E()function in ThetaML. Assume

y (ti+1) = b1 x(ti )1 + b2 x (ti )2 + b3 x (ti )3 + ϵ(ti+1 ),

where, for example, y (ti+1) is the value of a security based on the financial variable 
x, and x(ti ) is the price of a financial variable at time ti. The coefficients b1, b2  and 
b3 are constant. The terms x(ti )1, x (ti )2

 and (ti )3 
 are the price for the financial vari-

able at time ti, respectively to the power of 1, 2 and 3. The term ϵ(ti+1 )  is a Gaussian 
random variable.

The E() function computes the expected value of the above formulation E(y(ti+1 )│ 
σ(x(ti ))) = b1 x(ti )1 + b2 x(ti )2

 + b3 x(ti )3, conditional all paths of the financial vari-
ables x(ti ) at time ti. The term σ(x(ti )) denotes the smallest sigma field of the vari-
able x at time ti.
 
Graphically, the relationship between E(y(ti+1)│σ(x(ti ))) and x(ti ) , estimated with 
linear regression method for the above formulation is given in Figure 2.
 
The E() function in ThetaML uses similar idea for estimating the relationship be-
tween E(y(ti+1)│σ(x(ti ))) and x(ti ) at time ti , only that it uses advanced numerical 
algorithms optimized for more efficient and accurate results.
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Example 30:

This example computes the variable x as the expected value of y! (E(y!) at line 
4), conditional on the information known at time 5. The term y! at line 4 takes 
the next value of y at time 10 which is y = S at line 6.

1:  theta 5  % 5 time units pass 
2:  % x is set to the best guess value of y! conditional on 
3:  % time 5 information
4:  x = E(y!) 
5:  theta 5  % another 5 time units pass
6:  y = S  % at time 10, y has the value of S at time 10

The future operator “!” accompanying y at line 4 can be omitted due to the 
definition of the E()function, i.e.
 
 E(y!) == E(y)
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Figure 2. The relationship between E(y(ti+1)│σ(x(ti ))) and x(ti ) at time ti. The term σ(x(ti )) 
denotes the smallest sigma field of the variable x at time ti.

The variable x(ti ) is created as x(ti )  = 100 e 0.01*ϵ (ti )  , the variable y(ti+1) = e sin x (ti + 1 ) + 0.1 * ϵ(ti+1) 

, where ϵ(ti+1)  is the standard normal variable sampled for 1000 paths. The graph is based on 
the equation E(y(ti+1)│σ(x(ti ))) = b1 x (ti )1 + b2 x (ti )2 + b3 x (ti )3

 . In the graph above, the blue 
colored dots are sample values for the variable x(ti ) , the green line is the function value for 
E(y(ti+1)│σ(x(ti ))). This graph is generated in Matlab.
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3.12.2 The Function Beta()

The Beta()function takes two arguments and computes the beta factor(s) be-
tween these two arguments, conditional on the current information. The first ar-
gument as the explanatory variable(s) can have multiple dimensions in which 
case the Beta()function computes a beta factor for each component of that array. 
The second argument is the dependent variable for the conditional regression. 
The conditional regression is enabled with the future operator “!”, since condi-
tional regression involves future values of financial variables unknown at current 
time and the future operator “!” allows access to future values.

Mathematically, the Beta()function is defined as

cov (V(ti+1) , S(ti+1)│ σ(S(ti )))
β (S(ti+1) ,V(ti+1) │σ(S(ti ))) = 

var (S(ti+1)│σ(S(ti )))
 ,

where, the term V(ti+1) is the dependent variable, S(ti+1) is the explanatory vari-
able. The operator ( │ ) denotes conditioning. The numerator cov (V(ti+1) , S(ti+1)│ 
σ(S(ti ))) computes the covariance between the variables V(ti+1) and S(ti+1) , condi-
tional on σ(S(ti )) - the time ti smallest sigma field of S(ti ). The denominator var 
(S(ti+1)│σ(S(ti ))) computes the variance of S(ti +1 ) , conditional on time ti smallest 
sigma field σ(S(ti )). 
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3.12.3 Other Functions

The length() Function

The length of an array can be determined using the length() function.

Example 31:
 
A = [1, 2, 3, 4]  % A is an array with elements 1, 2, 3, 4
L = length(A)  % result: L = 4

Example 32:
 
% S is an array of 2 stocks in S
L = length(S)  %result: L = 2
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3.13 System Parameters

System parameters are compile-time parameters, they can be extracted with a @ 
sign followed by the keywords dt or time.

3.13.1 The Parameter @dt

The synchronous time interval parameter @dt has different values depending on 
its context.

If @dt is found following the theta command, it evaluates to the time interval of 
the next smallest time step. If @dt is located elsewhere, it evaluates to the time 
elapsed since the thread’s previous invocation of the theta command. The pa-
rameter @dt is most often used within the infinite loop loop inf … end.

Example 33:

This example simulates a standard Brownian motion process for all time steps; 
the parameter @dt is an argument to the theta command.

 1:  model BrownianMotion
 2:
 3:  export W “Standard Brownian Motion process”
 4:
 5:  W = 0  % initialize the W process at 0
 6:  loop inf  % infinite loop
 7:  theta @dt % passes time by @dt time interval
 8:  W = W + sqrt(@dt) * randn() % update the process W
 9:  end
10: 
11:  end
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In the example model BrownianMotion, line 5 initializes the Brownian Motion pro-
cess W at 0, the process then enters an infinite loop loop inf, the infinite loop runs 
until all other fixed-length loops sharing the same model time axis stop running. 
This happens when the model BrownianMotion is called or the exported W process 
is imported by other product models as input parameters. After each time passing 
of @dt units with the theta command at line 7, the process W is then incremented 
by a random amount of sqrt(@dt) * randn(), where both sqrt()and randn()
are math functions. 

The time interval parameter @dt in this simulation model remains to be deter-
mined. When the model BrownianMotion is called by some pricing models with 
explicit time intervals, the parameter @dt then extracts the smallest of all the time 
intervals from the current model time to the immediate next model time point. 
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Example 34:

This example illustrates the use of several ThetaML commands: fork … end, loop 
inf … end, theta @dt, and @dt. 

 1:  model SimpleAnnuityModel
 2:  % This model computes the price of an annuity with 
 3:  % constant interest rate ‘r’
 4:  import r  “Risk-free interest rate”
 5:  import n  “Number of years”
 6:  export D  “Discount process”
 7:  export Annuity  “Annuity value”
 8: 
 9:  %a fork … end block
10:  fork 
11:  D = 1 % initialize the discount factor at 1 
12:  loop inf % infinite loop
13:  theta @dt % theta time passing 
14:  D = D * exp(-@dt * r) % update the discount process
15:  end
16:  end
17: 
18:  Annuity = 0 % initialize the Annuity value at 0
19:  loop n % fixed loop that loops for n times
20:  theta 1 % theta time passing of 1 year
21:  Annuity = Annuity + 100 * D % update the Annuity value
22:  end
23:
24:  end

In the model SimpleAnnuityModel, line 4 and line 5 import the constant param-
eters r and n into the model, line 6 exports the returned discount process D and 
line 7 exports the computed value for Annuity. 

The body of the model starts from line 10 and ends at line 22. The fork … end 
code block (line 10 - line 16) runs in parallel with the loop … end code block 
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(line 18 - line 22), synchronized by the model time passed by the two theta 
commands. It is as if the loop … end block is forked by the fork … end statement 
as well. 

The length of the loop loop inf … end is determined by the length of the loop loop 
… end, which is n. Since the theta command synchronizes the two threads – loop 
inf … end and loop … end, the time interval parameter @dt (in the infinite loop 
loop inf … end) extracts the time interval passing to the next model time point. 
The model time grid is determined by the theta 1 command in the fixed loop loop 
… end, i.e. at each model time an Annuity of 100 is paid and discounted to the 
present. At year 10, the Annuity stops. As such, model times in this example are a 
set of times in years {0, 1, 2, …, 10}, regularly spaced at an interval of 1. Each year, 
an event happens, i.e. a discounted cash inflow of 100 to the Annuity product.
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3.13.2 The Parameter @time

This @time parameter provides the current model time. It is the sum of all previ-
ous theta time steps. The parameter @time is most often used within the infinite 
loop loop inf … end.

Example 35:

 1:  model DiscountFactor
 2:  % This model computes a discount factor in two ways 
 3:  import r    “Risk-free interest rate”
 4:  export Discount_1  “Discount factor process 1”
 5:  export Discount_2  “Discount factor process 2”
 6: 
 7:  Discount_1 = 1  % at time 0, initialize Discount_1 at 1
 8:  Discount_2 = 1  % at time 0, initialize Discount_2 at 1
 9:  loop inf   % infinite loop
10:  theta @dt % theta time passing at @dt time interval
11:  % update Discount_1 for the time interval @dt
12:  Discount_1 = Discount_1 * exp( -r * @dt )
13:  % update Discount_2 for the time that has passed since
14:  % time 0, this is summed by @time
15:  Discount_2 = exp( -r * @time )
16:  end
17: 
18:  end

The model DiscountFactor simulates two equivalent discount factors with con-
stant interest rate r. The parameter @dt is the time interval parameter, and @time 
is the sum of all previous time steps @dt. For example, if we are at the n-th loop, @
time would be equivalent to n*@dt if the time intervals extracted by @dt are con-
stant intervals. Since the interest rate is constant throughout the model life time, 
we have used the same r for different discounting time intervals.



P a g e  | 115

3.14 Chapter Example

A First Application of ThetaML to Pricing Financial Derivatives

This example shows how to price an American put option in ThetaML. The Ameri-
can put option is written on a single stock price S, the option maturity is T, and the 
option strike price is K. The put option is early exercisable.

The underlying stock price ‘S’ is assumed following a Geometric Brownian motion 
process under the risk-neutral measure ℚ:

dSt = rSt dt + σ St dWt , 

where the term St is the stock price at time t. The growth rate r and volatility σ 
of the stock price are constant parameters. The term dWt  are the increments of 
a standard Brownian motion process under the measure ℚ. The solution of the 
above Geometric Brownian motion process is:

St = S0 e {(r - σ2/2)t + σWt } , 

where the term S0 is the initial stock price, the term Wt is a value of the standard 
Brownian motion process at time t.

We discretize the stock price process for simulation as follows: 

Si , j = Si , j - ∆ e {(r - σ2/2) ∆ + σ √∆ εi , j } , 

for i = 1, ..., m and j = 1, ..., n, where m is the number of Monte-Carlo paths, n is the 
number of time steps used in the simulation. The discretization time step is as-
sumed constant at ∆. The term εi , j

  is the standard normal random variable sam-
pled for simulation path i at time j.
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In the ThetaML code examples, the cash flows in the option are denominated in 
currency ‘CUR’. The parameters for the stock price ‘S’ are set as follows: the mean 
growth rate of the stock price is the same as the risk-free interest rate ‘r’ in cur-
rency ‘CUR’; the volatility of the stock price is denoted as ‘sigma’, the initial stock 
price is ‘S0’. 

Since the cash flows occur at future times, a discount factor should be computed to 
obtain the present value of future cash flows. The discount factor in this example is 
a discount process with unit initial value in currency ‘CUR’. We assume that interest 
rates are constant throughout the option life time and set the constant interest rate 
to ‘r’, such that the value of the discount process decays at a constant interest rate 
‘r’. When the future cash flows of an asset are multiplied by the discount process 
‘CUR’, it serves two purposes: first, it discounts the future cash flows to current time; 
second, it translates the future cash flows into the currency unit ‘CUR’. 

The ThetaML model for simulating the stock price process and discount factor 
process is as follows:

 1:  model S_CUR_Processes 
 2:  % This model simulates: stock prices ‘S’ that follow the
 3:  % Geometric Brownian motion process, and a discount process 
 4:  % ’CUR’ for constant interest rate r in currency ‘CUR’
 5:  import S0  “Initial stock price”
 6:  import r  “Risk-free interest rate in currency CUR”
 7:  import sigma  “Volatility of stock prices”
 8:  export S  “Simulated GBM stock prices”
 9:  export CUR  “Simulated discount process in currency CUR”
10:
11:  fork
12:  % initial stock price
13:  S = S0 
14:  % infinite loop
15:  loop inf
16:  % time passing of @dt units, the value(s) of @dt are
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17:  % determined later when the simulated stock price 
18:  % process is applied in pricing financial contracts
19:  theta @dt
20:  % update stock prices for the time step @dt
21:  S = S * exp( (r - 0.5*Sigma^2) * @dt 
22:  + sigma * sqrt(@dt) * randn() ) 
23:
24:  end
25:  end
26:  % initial values of the discount factor process; set to 1 
27:  % in currency ‘CUR’
28:  CUR = 1
29:  % infinite loop
30:  loop inf
31:  % time passing of @dt units, the value(s) of @dt are
32:  % determined later when the simulated discount factor 
33:  % process is applied in pricing financial contracts
34:  theta @dt
35:  % the value of the discount factor decays at a constant
36:  % rate of r
37:  CUR = CUR * exp( -r * @dt )
38:  end
39:
40:  end

In the model S_CUR_Processes, line 5 - line 7 import respectively the initial stock 
price S0, the risk-free interest rate r, and the volatility of the stock price sigma, as 
constant parameters into the model. 

The body of the model starts from line 11 and ends at line 38. The stock price pro-
cess (line 13 - line 24) and the discount bond process (line 28 - line 38) are virtu-
ally paralleled processes. These two processes share the same model time axis. The 
use of the fork … end statement at line 11 enables virtual parallelization of the two 
processes. It is as if the second code block from line 28 to line 38 is forked by the 
fork … end statement as well. 
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In ThetaML, process variables implicitly incorporate scenario and time indexes. 
As such, the stock prices S and the discount bond CUR have both scenario and time 
dimensions. Henceforth, we talk about stock prices and discount bond prices in 
plural form.

The stock price S is initialized with S0 at line 13. It evolves in time through the infi-
nite loop loop inf that loops for all times and does value updates at a time interval 
@dt. The length of the infinite loop is determined later in the pricing model Ameri-
can_put listed below. The model American_put imports, among others, the stock 
price process S as parameter argument. In the model American_put, the imported 
stock price process S synchronizes with other imported process (such as CUR) and 
with the internal process V_CUR. 

Inside the infinite loop loop inf, time is passed by the theta command at an inter-
val @dt. When the model S_CUR_Processes is used in the pricing application Ameri-
can_put, the @dt parameter extracts the time interval, from current model time to 
the next nearest model time, passed by the theta command. In this case @dt evalu-
ates to T/n in the model American_put. 

In the model S_CUR_Processes, line 21 - line 22 updates the Geometric Brown-
ian motion stock prices S for the time step @dt. 

The discount factor CUR is initialized at 1 CUR at line 28. The value of CUR is then 
updated at a constant interest rate r for all times (by the infinite loop) with time 
step @dt. The length of the infinite loop loop inf and the value of the time step @dt 
are again determined in the model American_put where the processes S and CUR 
are imported as model arguments. 

Having simulated the stock prices S and the discount process CUR, we next turn to 
the task of pricing an American put option. The ThetaML model for an American 
put option is as follows:
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 1:  model American_put
 2:  % This model computes the price of a continuously 
 3:  % exercisable put option based on 52 exercise dates. This 
 4:  % model imports the stock price process ‘S’ and the discount 
 5:  % factor process ‘CUR’, both are simulated in the model 
 6:  % S_CUR_processes
 7:  import S  “Stock price process”
 8:  import CUR  “Discount process for the currency CUR”
 9:  import K  “Strike price for the American put option”
10:  import T  “Option maturity time”
11:  export P  “American put option values”
12:
13:  % time 0 American put option values
14:  P = V_CUR!
15:  % n number of loops
16:  n = 52
17:  loop n
18:  % conditional evaluation of American put option 
19:  % holding value compared with immediate exercise value,
20:  % both are discounted to time 0
21:  if E(V_CUR!) < (K - S) * CUR
22:  V_CUR = (K - S) * CUR
23:  end
24:  %time passing of ‘T/n’ units in ThetaML
25:  theta T/n
26:  end
27:  %American put option payoff at maturity time T, 
28:  %discounted by ‘CUR’ to time 0
29:  V_CUR = max(K - S, 0) * CUR
30:  end

In the example model American_put, line 7 and line 8 import respectively the 
stock price process S and the discount factor process CUR that are simulated exter-
nally in the model S_CUR_Processes. Line 9 and line 10 import respectively 
the option strike price K and the option maturity time T as constant parameters 
into the model. Line 11 exports the time 0 American put option prices P distrib-
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uted over all Monte-Carlo paths. Alternatively, We can export the option price P as 
a single estimate by simply setting P = E(V_CUR!)at line 14. 

In ThetaML, process variables implicitly incorporate scenario and time indexes, 
the variables S, CUR and V in this model are processes with scenario and time 
indexes. Processes are time stepped by the theta command. When external pro-
cesses such as S and CUR are imported into a ThetaML model, they synchronize 
with the processes inside the model, i.e. all the processes step forward in time 
along the same model time axis. Model time in the model American_put is spaced 
at a constant interval of T/n. Model time points are j*(T/n), where j = 1, …, n (n is 
the number of exercise times for the American put option). Model time points are 
such determined because at each time j*(T/n), there is an event happening – we 
evaluate the possibility of early exercise. The processes S, CUR and V_CUR are syn-
chronized at model time: if the variables S, CUR and V_CUR appear in the same code 
statement, their respective values are evaluated at the same model time executed 
at that line of code statement. If the code statement V_CUR = (K - S)*CUR is 
evaluated at model time j*(T/n), this is equivalent to assign to the variable V_CUR 
at model time j*(T/n), the value of K minus the values of S at model time j*(T/n), 
discounted to time 0 by CUR maturing at model time j*(T/n), for all Monte-Carlo 
scenarios.

Since the ThetaML model American_put is programmed in chronological order, 
we go through the code statements according to the coding sequence. 

At time 0 (line 14), the option prices P is set to be the same as the prices of the 
variable V_CUR. The variable V_CUR is referenced by a future operator “!”. The 
future operator “!” allows the values of V_CUR at a future time to be accessed. It 
looks into the future times to determine the current values of V_CUR. 

The process of determining the future values of V_CUR is as follows: we enter a 
fixed loop of length n (line 17) with constant time interval T/n. The if … end 
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block at line 21 - line 23 evaluates the early exercise decisions for the American 
put option; it compares pathwise the discounted holding values E(V_CUR!) with 
the discounted immediate exercise values (K - S) (both are discounted to time 0) 
and updates accordingly the values of V_CUR. This is equivalent to compare E(V_
CUR[i, j]!) with (K – S[i, j])*CUR[i, j], where, for illustration purposes, [i, j] denotes 
the i- and j-th element of the matrices V_CUR, S and CUR. The subindex i denotes 
the i-th index element of the Monte-Carlo scenarios, the subindex j denotes the 
j-th index element of the discrete time grid, for i = 1, …, m and j = 1, …, n, where m 
is the number of Monte-Carlo paths, n is the number of time steps. In case the if 
condition evaluates to be true for the index element [i, j], the value of V_CUR[i, j] is 
assigned (K – S[i, j])*CUR[i, j]; this is done for all paths and time steps where the if 
condition is true. The whole evaluation and assignment process, across m Monte-
Carlo paths and along n time steps, is compactly summarized by the following 
ThetaML code statements

21:  if E(V_CUR!) < (K - S) * CUR
22:  V_CUR = (K - S) * CUR
23:  end

The theta command (line 25) passes time T/n to the next model time point. After 
n loops with each loop passes by T/n time step, at the option maturity time T (n 
*(T/n)), the variable V_CUR is assigned the option payoffs max(K - S, 0) * CUR 
(line 29). That is, for all Monte-Carlo paths, the variable V_CUR at option matu-
rity time T is assigned the discounted put option payoffs. The put payoffs are the 
maximums of 0 and the strike price K minus the stock prices S at maturity time 
T. Note that the maximums are respectively taken over all the Monte-Carlo paths. 
The process S and CUR are simulated up till time T in the model American_put. 
This is so because the infinite loop loop inf in the process simulation model 
S_CUR_Processes runs until the fixed length loop in the pricing model Ameri-
can_put stops running, which is time T. The time interval parameter @dt in the 
model S_CUR_Processes takes the constant value T/n. Since T/n is the constant 
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time interval passed by the theta command to the next model time point, for all 
model times in the model American_put. 

The parameter CUR is the discount factor process simulated externally in the 
model S_CUR_Processes, it serves to discount a price process when the price 
process is multiplied by it. For example, the option payoffs at maturity time T is 
discounted with CUR by a factor equivalent to having a discount bond at time 0 
with maturity T; the values of V_CUR at time j*(T/n) are normalized with CUR to 
time 0 by a discounting factor with maturity j*(T/n). The same discount factor 
CUR that matures at each model time is applied to all Monte-Carlo paths, since in 
this example interest rate is assumed to be constant when externally simulating 
the process CUR. 

Since the option payoffs are discounted by CUR (line 29), for consistent compari-
sons and compact coding, the statement (K - S) in the if condition (line 21) is 
multiplied by CUR as well. Discounting to time 0 using CUR is equivalent to evalu-
ating all future cash flows in the currency CUR in present value terms. 

Computationally, we go backwards in time: starting from the American put op-
tion’s final payoffs, on each exercise date, we evaluate, for all Monte-Carlo paths, 
the possibility of exercise and update the discounted option values accordingly. 
Thus iterate backwards to arrive at the current values for the put option.

The model American_put is programmed forward in model time and computa-
tionally evaluated backwards. This feature is realized with the future operator “!” 
and the theta command. 

Since the time 0 values of V_CUR are referenced by a future operator “!” (line 14). 
We look into the future for the instance where the variable V_CUR is assigned some 
values. This occurs at the option maturity time T, when the variable V_CUR is as-
signed the discounted put option payoffs (line 29). 
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Denote V_CUR [i, j] as the price of V_CUR at time j for the simulation path i, for i 
= 1, …, m and j = 1, …, n, where m is the number of Monte-Carlo simulations, n is 
the number of time steps. At the option maturity time T, the variable V_CUR is de-
noted as V_CUR [i, T] for simulation path i, where T = n*(T/n), and T/n is the dis-
cretization time interval. The immediate previous instance of V_CUR (i.e. V_CUR [i, 
T - (T/n)]) is at line 21 and is referenced with a future operator “!”. This future 
operator “!” accesses its next instances of V_CUR (i.e. V_CUR [i, T]) at line 29, so 
that at line 21  V_CUR! = max(K - S,0)*CUR. At time T - (T/n), the E()function 
computes the expected value of V_CUR! (equivalent to V_CUR [i, T]) conditional on 
the information known at time T - (T/n).

The if condition (E(V_CUR!) < (K - S) * CUR at line 21) compares the ex-
pected discounted option holding value E(V_CUR!) with the discounted option 
intrinsic value (K - S) * CUR, respectively for all Monte-Carlo paths. If the con-
dition evaluates to be true, the variable V_CUR at time T - (T/n) is assigned the 
discounted option intrinsic value at time T - (T/n), the assignment is done respec-
tively for all the Monte-Carlo paths at time T - (T/n). This process is computation-
ally iterated back to time 0 to arrive at the time 0 values of V_CUR. 





P a g e  | 125

4 The ThetaML Type System

We shall see in this chapter how ThetaML helps 

	 To define the correct type of a process or 
variable and how 

	 Theta Suite can automatically create an ap-
propriate GUI form for the data entry.

On the surface ThetaML looks like an untyped lan-
guage. All variables can have different types without 
the need to explicitly declare their types. Internally 
however, ThetaML is strictly typed. Once the code is analyzed and its execution 
sequence is optimized in terms of memory and speed, all variable types are fixed. 
Although the ThetaML compiler implements sophisticated type extraction algo-
rithms, sometimes it may fail to derive the desired variables types. 

There are two reasons to help ThetaML with type extraction. First, the defini-
tion of imported variables allows customized widgets to show up in the ThetaML 
Configurator. Second, manual type definitions are needed for external models and 
functions. Because these models are defined outside the ThetaML language, their 
types cannot be derived automatically. The default return type for all external 
functions is a scalar value or a vector with one scalar value per Monte-Carlo path. 
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4.1 The Boolean Type 

Boolean types are rendered as a check box in the ThetaML Configurator. 

A variable is implicitly assumed Boolean if it is used in an if statement, as shown 
in the following code example: 

model importBooleans
  import a,b,c,d “All booleans”

  if a & (b | c)
   %do something
  end

  if d
   %do something else
  end

end

A variable can be explicitly declared Boolean with the type keyword after the im-
port statements. 

model importsABoolean
  import B “Yes or No”
 
  type B Boolean
 
  %do something
end
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4.2 The File Type 

Files are internally treated like strings, but they behave differently in two ways. 
First, the ThetaML Configurator shows file selection buttons that allow the user to 
choose a file’s location, rather than enter it as text. Second, file strings can contain 
paths that are relative to the Theta Suite workspace. Whenever a file location is 
passed to an external model or an external function, this file string is automati-
cally converted to an absolute file path. 

There are two types of files: input files and output files. For input files, a file selector is 
generated that only shows existing files. Output files allow the choice of using nonex-
istent files. The output file type can only be used within the context of external mod-
els, because ThetaML itself does not provide any language features for writing files 
to a file system. The following code example shows the use of file types in ThetaML.

model fileInAndOutWithCall
  import fileIn
  import fileOut
 %set file type in call 
 %do something
end

model fileInAndOutExplicit
  import fileIn
  import fileOut

  type fileIn file
  type fileOut outputfile
  call @matlab : fileManipulatingModel
  export fileIn, fileOut

 %set file type explicitly for matlab function 
  res = fileWriter(fileIn, fileOut)
  %do something
end
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4.3 The Enum Type 

Some models only have a limited number of input values. For these cases it is 
often desirable to generate a selection box in the ThetaML Configurator so that 
users of the model cannot enter incorrect values. They can only choose from a list 
of given values. 

Enum types are implicitly created in the Theta Orchestrator 11 in Theta Suite. 
Inserting a ‘Switch’ with a list of named cases internally creates an Enum type with 
each case name as possible value. 

Enum types can also be explicitly created with the type statement. The options 
are given as a list of possible values: 

model someChoices
  import x “This variable can be 1,2,3, or 3.141”

  type x Enum [1, 2, 3, 3.141]
 
  %do something

end

11 For details see Theta Suite Help >Theta Suite User Guide > Theta Suite Components > Theta Orchestrator
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4.4 Array types 

In ThetaML, it is essential that array lengths are known at compile time. There-
fore the array length is part of the variable type, must be fully determined, and 
can not change during model executions. 

Normally, array lengths are implicitly determined through their index accesses or 
definitions. These statements all specify the variable x to be an array of length 4. 

  a = 1 + x[4]
  x[4] = 4
  x = [1,2,3,4]

Array types can also be explicitly defined with the type statement. Arrays of num-
bers must be specified with float as a base type, followed by the array dimension 
in brackets. 

model xHasLengthFour

  export x

  type x float[4]
 
  x = 3 %array with 4 elements, all set to 3

end
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5 ThetaML Interfaces

ThetaML offers a very compact notation for sophis-
ticated financial models. However, as for all pro-
gramming languages, inappropriate use of some 
ThetaML language syntax can be misleading. 

ThetaML provides interfaces to ensure that certain 
functionalities are within the constraints of rational 
financial modeling. Interfaces can be applied to a 
ThetaML model. If the model does not comply with 
the constraints defined by the interface, the model 
can not be executed and returns an error message 
with the violated constraint. Thus, model reviews can rely on the presence of cer-
tain interfaces, without the need to check each sub_model for inappropriate use 
of ThetaML language features. 
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5.1 Interface Syntax 

The ThetaML interface is defined similar to a model, starting with the interface 
keyword. The interface contains sections for obligatory variables and constraints 
for inputs and language features.

The ThetaML interface has the following structure:

interface exampleFace
%impose some constraints
end

A model that complies with the interface must indicate compliance with the im-
plements keyword. The compliant model is sometimes also called implementing 
model. 

model compliantModel implements exampleFace

%model content
end
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A single interface can be applied to multiple implementing models sharing the 
same import argument(s):

% the interface Itest imposes a constraint on S0 which 
% is imported in the implementing models stock1 and stock2

interface Itest
  import S0 “Initial stock price”

  % impose constraint on the initial stock price 
  assert(S0 > 0, ‘Initial stock price must be greater than 0’)
end

model stock1 implements ITest
  import S0  “Initial stock price”
  import mu1  “Drift of stock price”
  import sigma1  “Volatility of stock price” 

 % model content
end

model stock2 implements ITest
  import S0  “Initial stock price”
  import mu2  “Drift of stock price” 
  import sigma2  “Volatility of stock price”

 % model content
end
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Interfaces can also be extended with additional constraints by applying an inter-
face to an interface. Again the implements keyword is used: 

interface IStricter implements ITest
% impose additional constraints upon the existing 
% interface ITest

end

The following example illustrates how to use interface in ThetaML:

Example 36:

 1: interface ITestInterface
 2: % This interface applies to the implementing model GBM
 3:  import r “Risk-free interest rate”
 4:  %impose a constraint on interest rate r
 5:  assert(r > 0, ‘Interest Rate r must be greater than 0’)
 6: 
 7: end

 1: model GBM implements ITestInterface
 2: % This model simulates stock prices following a Geometric
 3: % Brownian Motion process
 4:  import S0   “Initial stock price”
 5:  import r   “Risk-free interest rate”
 6:  import sigma  “Volatility of stock price”
 7:  export St   “Simulated stock Prices”
 8: 
 9:  St = S0   % initial stock price at S0
10:  dt = 1/12   % discretization time interval 
11:
12:  loop 12   % the loop runs 12 times
13:   theta dt  % time passing of dt = 1/12
14:   % update the GBM stock price for the time step dt
15:   St = St * exp( (r - 0.5 * sigma^2) * dt 
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16:    + sigma * sqrt(dt) * randn() ) 
17:  end
18:
19: end

The interface ITestInterface imposes a constraint on the interest rate param-
eter r used in the model GBM. The constraint is imposed using the ThetaML key-
word assert (line 5). The assert statement takes as first argument the condition 
that must be satisfied by the respective parameter(s), followed by a comma, then 
a string12 that shows up as error message13 in the ThetaML Configurator when the 
constraints are violated.

The model GBM indicates compliance with the interface ITestInterface using 
the keyword implements. GBM is a ThetaML model for simulating the discretized 
Geometric Brownian Motion (GBM) process of stock prices. The stock price pro-
cess St starts at S0 (line 9), the discretization time interval is a constant dt equal 
to 1/12 (line 10). The command theta dt (line 13) passes time to the next discret-
ization time point. The St process is updated 12 times at a constant time interval 
1/12. Line 15 - 16 call three math functions exp, sqrt and randn(). The resulting 
simulated stock prices are exported at line 7. Note that the variable St is a process 
variable with implicit scenario index and time index.

12 String is a ThetaML internal type.
13 The error message can be found in the text box under the "Info" section in the Thet-
aML Configurator.
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5.2 Interface Import and Export Statements

ThetaML interfaces may contain import and export statements. Variables listed 
there must be imported and exported by every implementing model. The inter-
face can thereby guarantee the presence of certain variables and accidental re-
naming can be avoided. Furthermore, variables in the interface can be provided 
with a default comment for the implementing model, as the following example 
shows: 

interface ImustExport
  % the exported variable S also adds a default comment for the 
  % variable S in the implementing model ‘modelS’ 
  export S “The stock price of XXX”
 
  % impose constraints for the exported variable S, note the
  % constraints on S are checked after the model modelS is run

end

model modelS implements ImustExport
  % import statements …
  export S
 
  % process statements 

end
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5.3 Language Constraints 

Language constraints can be applied to models, including all sub_models. If a mod-
el with language constraint(s) calls another model which uses that language fea-
ture but does not itself implement that constraint, an error marker is shown for 
the calling operation. No error is shown for the called model. 

The following language constraints can be applied to ThetaML. All constraints are 
case insensitive. 

@notheta: This model can not pass model time using the theta command. All 
computations must be done based on the present value of state variables. It can 
not have any process dependency. 

@noBackward: No use of the future operator “!”. Access to the future value(s) of a 
variable and reverse execution order is forbidden. 

@noRegression: No use of the expected values E() and the betas Beta(). Because 
these operators have an implicit access to the future values of variables, this con-
straint is automatically active if @noBackward is included in the constraints. 

@noExternalFunction: Calls to external functions, such as those defined in Mat-
lab, are forbidden. All functionalities must be defined in ThetaML. This constraint 
ensures portability of the ThetaML model to other numerical backends. 

@noExternalModule: Calls to external models are forbidden. This constraint is au-
tomatically active, if @noExternalFunction is active. Models are invoked with the 
call @backend:ModelName. Unlike functions, models can also import and export 
time dependent processes. 



P a g e  | 138

@noInfLoop: The use of loop inf is restricted. The infinite loop construct allows 
the creation of stochastic processes that are simulated as long as needed. The use 
of this construct is inappropriate in product- or contract-specific models. 

@noFork: Forbids the fork keyword. It is important to point out that calls to sub_
models implicitly create a fork. i.e., the sub_model bodies are executed in parallel 
(in model time) with the calling model. Calls clearly separate variable spaces and 
are hence easier to handle than forks. Forks are helpful for small and experimen-
tal models, but should not be used in complex projects. 

An example for an interface activating all available constraints can look like this: 

interface IConstrainAll
  @notheta
  @noExternalFunction
  @noBackward
  @noExternalModule
  @noFork
  @noInfLoop
end
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5.4 Value Assertions 

Another type of constraint can apply to input parameters. These constraints do 
not concern the ThetaML model, but the input parameters defined in the Thet-
aML Configurator. If any of these assertions are violated, the errors are shown in 
the configuration, not in the model. 

Value assertions are specified in the interface with the assert statement. An 
assertion has two arguments. The first is a boolean expression that evaluates 
whether the constraint is valid. The second optional argument is a human read-
able error message that is shown in the configuration page if the assertion fails. 

An example for using the assert statement in a ThetaML interface looks like this: 

interface IAssertRanges
  import sigma, rho
  % use ‘assert’ to impose the constraints for the input 
  % parameters

  % the input parameter ‘sigma’ must be bigger than 0
  assert(sigma > 0, ‘Sigma must be positive’)

  % the input parameter ‘rho’ must lie between -1 and 1
  assert(rho >= -1 && rho <= 1, ‘Correlation must be between 
       -1 and 1’)
 
end
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6	 Workflows

Workflows in ThetaML are very similar to the mod-
els we saw in the previous chapters. They allow 
automation of recurring tasks, especially the defi-
nition of data pre- and post-processing. Typical ap-
plications of workflows are in defining iterations 
over the starting values of a given pricing task. 
Workflows can also define sources from which in-
put data are read or result files that should be writ-
ten to. Thus, workflows provide the capabilities one 
would expect from a normal scripting language, 
without support for ThetaML simulation specific 
features such as computing expected values (the E function), future access using 
the future operator “!”, or scenario-wise executions.

Workflows look very similar to ThetaML simulation models14. However, they 
are evaluated differently from the compilation and optimization method used in 
evaluating ThetaML simulation models. Workflows are evaluated step-by-step ac-
cording to the order of program flow, and they allow much more flexibility when 
it comes to complex data types. Moreover, workflows can take full advantage of 
the infrastructure integrated into Theta Suite. This includes automatic generation 
of graphical user interfaces, automatic extraction of data types, and editing sup-
port with instantaneous error indicators.

14 Simulation models here refer generally to models defined using the keyword model.
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6.1	 Workflow	Definitions

Workflows are introduced with the keyword workflow followed by the workflow 
name:

workflow <WorkflowName>
 ...
end

Workflows can import and export variables similar to ThetaML simulation mod-
els:

workflow testFlow
  import X “comment for X”
  import Y “comment for Y”
  export report “Result object contains all interesting stuff”

  ...
 
end
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Workflow variables can have the input data types listed in Table 3. Wherever pos-
sible, these types are automatically extracted from the workflow source with the 
usual type extraction method15 in ThetaML. Workflows are dynamically typed. 
Type definitions are only relevant for the user interface, where custom widgets 
are shown. 

Data Type Widgets
Boolean Check box
Enum Selection box
File File Chooser for existing files
Outputfile File Chooser for existent and non-existent files
Float/String/Array Text field for free form formulas

 
 Table 3. Input data types defined in workflows.
Column 1 lists the input data types in workflows. Column 2 gives a short description of the data 
types in the form of widgets that appear in ThetaML Configurator.

15 For more on data extractions in ThetaML, please see section 1 of Chapter 3.
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6.2	 Workflow	Statements

Workflows allow the same set of statements as ThetaML simulation models, ex-
cept that workflows do not support the theta and fork statements. Workflows 
do not maintain their own model time. The statements in workflows are always 
executed in the order they are defined.
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6.3	 Assignments	in	Workflows

Assignments are definitions of variables. They can operate on variables, their 
subfields, and array components. The right hand side of an assignment can be 
any value or formula:

% assign ‘X’ some values
X = ...

% assign something to ‘field2’ of the object ‘X’; 
% ’field2’ is a subfield of ‘field1’; ‘field1’ is a field 
% of the object ‘X’ 
X.field1.field2 = ...

% assign something to the ‘index’ element of the array ‘field2’; 
% ‘field2’ is a subfield of the 3rd index element of the 
% array ‘field1’; ’field1’ is a field of the object ‘X’
X.field1[3].field2[index] = ...
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6.4	 Loops	in	Workflows

Loops share their semantics with ThetaML simulation models. They can be defined 
by following the loop keyword with either a fixed number or an array with values. 
Compared to ThetaML simulation models, infinite loops (loop inf) are forbidden.

A fixed loop example:

  loop 10
   % do this ten times
  end

Array loops with indexOf() are possible:

  % x serves as an iterator for the ‘Array’
  loop x : Array
   % loop through each element in ‘Array’

   % optional using indexOf()
   index = indexOf(x) 
 end

Loop results can be put into an object and exported:

% export the ‘report’ object
export report
% define the ‘ShiftArray’
ShiftArray = [-0.5, -0.1, 0, 0.1, 0.5]
% loop through the elements of the array ‘ShiftArray’
% ’shift’ serves as an iterator for the array ‘ShiftArray’
loop shift : ShiftArray
  % during the looping process, store in the field ‘shifted’ 
  % of the object ‘report’ the assigned values; 
  % the compiler automatically detects ‘report’ 
  % is of type object
  report.shifted[indexof(shift)] = ...
end
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6.5	 Conditional	Executions	in	Workflows

Workflows use the same conditional evaluation statements as ThetaML simula-
tion models:

  if <condition>
   % do if the ‘condition’ is true
  else
   % do if the ‘condition’ is false
  end
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6.6	 Sub	Workflows

Workflows can call each other using the syntax for calling sub_models in simula-
tion models:

  %call sub workflow ‘subworkflow’
 call subworkflow
   % export the ‘param’ field of the object ‘context’ defined
   % in the calling workflow to the ‘param’ argument in the 
   % called ’subworkflow’
   export context.param to param
   % import in the ‘case_1’ field of the object ‘report’ defined
   % in the calling workflow from the ‘report’ argument in the 
   % called ’subworkflow’
   import report.case_1 from report
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6.7 Functions

Workflows support all functions defined in ThetaML simulation models, except 
the expected value function (E), the beta function (Beta) and the future operator 
(“!”).

Below we give a list of some supported operators and functions in workflows:

- Arithmetic operators: +, -, /, *, ^
- Logical operators: ~, &&, ||
- Array operators: x[5], [1,2,3], [1:2:50],[1:10], length(), ... 
- Mathematical functions: max, min, log, exp, sqrt, sin, cos, atan, ...

Additionally workflows have access to file operations. The following are two 
workflow commands that operate on files:

load: this command load a .thetaml file, such as a pricing configuration file 
run: this command runs the pricing configuration file 
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The following is a simple workflow example:

workflow simpleWorkflow
  import testFile  “Configuration file: testFile”
  import shift  “Shift level for initial parameters”
  export result  “Export the results”

  % load the ThetaML configuration file ‘testFile’
  conf = load(testFile)

  % change the parameter value by ‘shift’;
  % ’param’ is a field defined in the variable object ‘conf’
  % ’value’ is a subfield of the field ‘param’ 
  conf.param.value = conf.param.value + shift

  %return the results ran in the object ‘result’
  result = run(conf)
end
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6.8 External Namespaces

Workflows can make use of all the functionalities that are available from the Thet-
aML Configurator. That includes the ThetaML @today parameter, functions follow-
ing the @matlab call command, and the @ql QuantLib namespace. If some custom-
ized extensions are added to Theta Suite, they are also accessible by workflows.

The compiler does not assume that results in workflows from the external func-
tions are numerical arrays or associated with scenario indices. All return types 
(structs, arrays, objects, and so on) are therefore allowed in workflows.

Obviously Matlab actions can be triggered, such as storing data to disk, convert-
ing to Excel, or opening dialogs. Matlab statements that make modifications to the 
Matlab workspace can have unexpected impact on the running workflows. They 
may work, but are not universally supported.
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7 ThetaML Language by Example

The two tutorials in this chapter serve as a guide to 
implement your first financial model:

	 The Tutorial “From European to American” 
shows how to model classical equity op-
tions, starting from a simple European op-
tion up to a more complex Compound op-
tion with early exercise features.

	 The Tutorial “Hedging in ThetaML” pres-
ents different ways for option hedging. The 
hedging strategies go from simple delta hedging to more efficient hedging 
with our Beta function.
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7.1 Tutorial From European to American

This tutorial applies the ThetaML Language in the area of pricing financial derivatives.

ThetaML presents the definition of complex financial derivatives with unprece-
dented simplicity. This is demonstrated by the following examples.

To start with, we implement in ThetaML a simple European option, then show 
how easy it is to add additional features – such as Bermudan and American exer-
cise features, or to change the underlying to another option, such as a compound 
option.

7.1.1 The Stochastic Process

To price an option, we first define a stochastic process for the underlying. As there 
might be thousands of scenarios for the future values of the underlying, good 
modeling language and powerful simulation engine are essential for estimating 
accurate future values. This is where ThetaML comes into play.

For the simple purpose of this tutorial, we use the stock price process S and the 
discount factor process CUR simulated in the model S_CUR_Processes in the Chap-
ter Example of Chapter 3. The stock price parameter S follows a Geometric Brown-
ian motion process under the risk-neutral measure, the discount factor process 
CUR is discounted at a constant interest rate r.

In terms of naming conventions in ThetaML models, we use in general the suffix _CUR 
for variables that are discounted to time 0 by the discount factors CUR. For example, 
in the code statement V_CUR = max(K - S, 0) * CUR, the variable V_CUR has suffix 
_CUR, because its right hand side values are discounted by CUR to time 0. By discount-
ing to time 0, we always talk about future cash flows in present value terms.
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With the simulated S and CUR processes, we now turn to the task of pricing a Eu-
ropean option in ThetaML.

7.1.2 European Option

This little example shows how to price a European option in ThetaML. 

 1:  model EuropeanPut
 2:  % This model returns a simulated European put option price
 3:  import S  “Stock prices”
 4:  import CUR “Discount factors”
 5:  import K  “Strike price for the European put option”
 6:  import T  “Time to maturity in years”
 7:  export P  “European put option price”
 8:
 9:  % time 0 European put option price, E(V_CUR!) = E(V_CUR) 
10:  P = E(V_CUR!)
11:  % T years pass
12:  theta T
13:  % at maturity T, the option payoff is discounted to time 0
14:  V_CUR = max(K - S, 0) * CUR
15: 
16:  end

In the model EuropeanPut, the import block (line 3 - 6) defines the variables 
that must be imported as model arguments, among which, the stock prices S and 
discount factors CUR are externally simulated processes. When external processes 
are imported into the model, they automatically synchronize in model time with 
the processes in current model. As such, S and CUR take their respective values 
at the corresponding model time. For example, S and CUR at line 14 take their 
respective values at maturity time T. 

The exported variable P (line 7) is the option price returned by the model.
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Following the import and export block, the body of the model consists of three 
statements. 

At time 0, the option price P is defined as the expected value of the discounted fu-
ture payoffs V_CUR! conditional on the time 0 information (line 10). The variable 
V_CUR at line 10 is referenced with the future operator “!”. The future operator 
“!” acts like a function on V_CUR, which means we wait to determine its values till 
a later instance when V_CUR is explicitly assigned some values. 

At line 12, the theta command advances model time by T years. 

Then we reach maturity time T, and the variable V_CUR is assigned the discount-
ed option payoffs (line 14). The option payoffs V_CUR at line 14 are discounted to 
time 0 by the discount factors CUR that mature at time T, as such future cash flows 
are represented in present value terms.

The variables S, CUR and V_CUR are process variables with implicit scenario and 
time indexes, as such we always talk about their values in plural forms.
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7.1.3 Bermudean Option

We now extend the European option with an additional feature. Suppose that half 
the maturity time has passed and we decide to exercise the option early. Let us 
adjust our model to reflect this new feature. 

 1:  model BermudanPut
 2:  % This model returns a simulated Bermudan put option price
 3:  import S  “Stock prices”
 4:  import CUR “Discount factors”
 5:  import K  “Strike price for Bermudan put option”
 6:  import T  “Time to maturity in years”
 7:  export P  “Bermudan put option price”
 8:
 9: % time 0 Bermudan put option price
10:  P = E(V_CUR!)
11:  % T/2 years pass
12:  theta T/2
13:  % early exercise evaluation, compare expected discounted 
14:  % option hold value with discounted option intrinsic value
15:  if E(V_CUR!) < (K - S)* CUR
16:     V_CUR = (K - S)* CUR
17:  end
18:  % another T/2 years pass
19:  theta T/2
20:  % at maturity T, V_CUR has the discounted put payoffs
21:  V_CUR = max(K - S, 0)* CUR
22:
23:  end

The model BermudanPut imports two external processes: the stock prices S and 
the discount factors CUR. The two processes S and CUR automatically synchronize 
in model time with other processes in current model. As such, S and CUR take their 
respective values at the corresponding model time. For example, S and CUR at line 
15 take their respective values at time T/2. At line 21 they take their respective 
values at option maturity time T.
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In the model BermudanPut, initially we define the option price P as the expected 
discounted future values of V_CUR! (line 10), and wait for a time period of T/2 
(line 12). We then compare the expected discounted option hold values E(V_
CUR!) with the discounted option intrinsic values (K - S) * CUR (line 15). If the 
if condition at line 15 turns out to be true, we assign the new values to V_CUR 
(line 16). We then wait another T/2 years (theta T/2 at line 19) and assign the 
discounted payoff values to V_CUR at the option’s maturity time T (line 21). The 
variables S, CUR and V_CUR are process variables with implicit scenario and time 
indexes, as such we write their values in plural form.

Note that the compiled codes will record the commands into a computational or-
der. This forces the final assignment of V_CUR to be evaluated first. The result is 
then overwritten by optimized option values when stepping backwards in time.
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7.1.4 American Option

An American option goes even further than the Bermudan option in that it can be 
exercised continuously. To implement this in ThetaML, we formulate a Bermudan 
approximate with finite step size between possible exercise times. The following 
ThetaML model implements such an approximation with daily exercise intervals, 
assuming 252 trading days per year.

 1:  model AmericanPut
 2:  % This model returns a simulated American put option price
 3:  import S  “Stock prices”
 4:  import CUR “Discount factors”
 5:  import K  “Strike price for American put option”
 6:  import T  “Time to maturity in years”
 7:  export P  “American put option price”
 8:
 9:  % time 0 American put option price
10:  P = E(V_CUR!)
11:  % loop T*252 times, T*252 rounded down to
12:  % the nearest integer
13:  loop T*252
14:  % early exercise evaluation 
15:  if E(V_CUR!) < (K - S)* CUR
16:        V_CUR = (K - S)* CUR
17:  end
18:  % 1 trading day passes
19:  theta 1/252
20:  end
21:  % at time T, the option payoff is discounted to time 0
22:  V_CUR = max(K - S, 0)* CUR
23:  
24:  end

In the model AmericanPut, at time 0, we define the option price P as the expected 
discounted future values of V_CUR! (line 10). With time passing (theta 1/252), 
on each exercise date, we compare the expected discounted values of continu-
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ation E(V_CUR!)with the discounted option intrinsic values (K - S)*CUR (line 
15). If the latter turns out favorably, we assign the new values to V_CUR (line 16). 
After T*252 days, we assign the discounted payoff values to V_CUR at the option’s 
maturity time (line 22). We discount the process variable V_CUR and the option 
intrinsic values (K - S) to time 0 so that future cash flows are always seen in 
present value terms.

The model AmericanPut imports two external processes: the stock prices S and 
the discount factors CUR. The two processes S and CUR automatically synchronize 
in model time with processes in current model. As such, S and CUR take their re-
spective values at the corresponding model times. For example, S and CUR at line 
15 take their respective values at the model time executed at that line of code. At 
line 22 they take their respective values at option maturity time T. The variables 
S, CUR and V_CUR are process variables with implicit scenario and time indexes, 
their values are therefore written in plural form.

Computationally, we go backwards in time: starting from the American put op-
tion’s final payoffs, on each exercise date, we evaluate the possibility of early ex-
ercise and update the discounted option values accordingly. Thus iterating back-
wards to arrive the current put option price. 
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7.1.5 Compound Option

The compound option is an option on an option. Let us assume the outer option 
is a European call option and the inner option is an American put option, i.e. a 
European call written on an American put. 

Based on the above ThetaML models for European and American options, our 
model for the compound option is implemented as follows:

 1:  model CompoundOption
 2:  %This model simulate prices a Compound option 
 3:  import S  “Stock prices”
 4:  import CUR “Discount factors”
 5:  import K1  “Strike price for the outer option”
 6:  import K2  “Strike price for the inner option”
 7:  import T1  “Time to maturity of the outer option”
 8:  import T2  “Time to maturity of the inner option”
 9:  export P  “Compound option price”
10:
11:  % time 0 compound option price
12:  P = E(V_CUR!)
13:  % T1 time passes
14:  theta T1
15:  % outer European call option payoffs
16:  if E(V_CUR!)- K1 * CUR > 0
17:  % if the payoffs have positive values, V_CUR at time 
18:  % T1 is assigned (V_CUR! – K1*CUR); at time T1, 
19:  % the values of V_CUR! remain to be determined 
20:  V_CUR = V_CUR! - K1 * CUR
21:  else
22:  V_CUR = 0
23:  end
24: 
25:  % inner American put option
26:  loop (T2-T1)*252
27:  %early exercise evaluation
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28:  if E(V_CUR!) < (K2 - S) * CUR
29:  V_CUR = (K2 - S) * CUR
30:  end
31:  % time passing of 1 trading day
32:  theta 1/252
33:  end
34:  % at time T2, inner option payoff discounted to time 0
35:  V_CUR = max(K2 - S, 0) * CUR
36:
37:  end

In the model CompoundOption, we import two strike prices K1 and K2 as well as 
two maturity times T1 and T2 respectively for the outer and inner options. We 
export the computed compound option price in the variable P.

The model CompoundOption imports also two external processes: the stock price S 
and the discount factors CUR. The two processes S and CUR automatically synchro-
nize in model time with processes in current model. As such, S and CUR take their 
respective values at the corresponding model time. For example, S and CUR at line 
28 take their respective values at the model time executed at that line of code. At 
line 35 they take their respective values at time T2.

Initially, the compound option price P is set to the expected discounted future val-
ues of V_CUR! (line 12). The future values of V_CUR are determined as what follows. 

At time T1, we reach the maturity of the outer European call option. The outer 
European call payoffs depend on the values of the inner American put option at 
T1. Instead of using the single line of code V_CUR = max(E(V_CUR!)- K1 * CUR, 
0)for the outer European call payoffs, we code the payoffs as in line 16 - line 23, 
which is a separate statement version for V_CUR = max(E(V_CUR!)- K1 * CUR, 
0) but numerically more efficient.

Assuming 252 possible exercise dates (line 26) for the inner American put, on 
each exercise date starting from T1, we compare the expected discounted Ameri-
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can put holding values with its discounted intrinsic values and assign the updated 
values to V_CUR (line 28 - line 30). After (T2-T1)*252 days, we reach the ma-
turity of the inner American put, and assign the discounted American put payoffs 
to V_CUR (line 35). 

The discount factors CUR discounts the process variable V_CUR and the statement 
(K2 - S) to time 0. By discounting to time 0, we always talk about future cash 
flows in present value terms. The variables S, CUR and V_CUR are process variables 
with implicit scenario and time indexes.

The compiler records the commands into a computational order, i.e. iterate back-
wards in time. Starting from the inner American put option’s final payoffs, on each 
exercise date, we evaluate the possibility of exercise and update the discounted 
option values accordingly. Thus iterating backwards, at the outer European call 
option maturity T1, we already know the estimated inner American put option 
values at T1; as such, the outer European call option is easily valued like a vanilla 
European call.
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7.1.6 Hedged American Option

With the above setting as our background, it is easy to introduce variance optimal 
hedge. The ThetaML command Beta(S,V) computes the optimal fraction of S that 
minimizes the variance of a portfolio with one option V and Beta(S,V)number of 
asset with price S.

Our model for the hedged American option is implemented as follows:

 1:  model Hedged_American
 2:  % This model beta hedges the American put option
 3:  import S   “Stock prices”
 4:  import CUR  “Discount factors”
 5:  import K   “Strike price for American put option”
 6:  import T   “Time to maturity in years”
 7:  export P   “Hedged American put option price”
 8:  export V_CUR  “Process of option hedge”
 9:
10:  % time 0 American put option price
11:  P = E(V_CUR!)
12:  % loop T*252 times, assuming 252 trading days in a year
13:  loop T*252
14:  % using the Beta function to provide a better hedge 
15:  % for the price process V_CUR, note 
16:  % Beta(S!*CUR!, V_CUR!) = Beta(S*CUR, V_CUR)
17:  V_CUR = V_CUR! - Beta(S!*CUR!,V_CUR!)*(S!*CUR! - S*CUR)
18:  %time passing of 1 trading day 
19:  theta 1/252 
20: %early exercise evaluation
21:  if E(V_CUR!) < (K - S)* CUR
22:  V_CUR = (K - S)* CUR
23:  end
24: 
25:  end
26:  % the time T American put payoffs are discounted to time 0
27:  V_CUR = max(K - S, 0)* CUR
28: 
29:  end
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In the model Hedged_American, we import the stock prices S and the discount 
factors CUR simulated externally. The two processes S and CUR automatically syn-
chronize in model time with processes in current model. As such, S and CUR take 
their respective values at the corresponding model time. For example, S and CUR 
at line 21 take their respective values at the model time executed at that line of 
code. At line 27 they take their respective values at option maturity time T.

At time 0 we assign to P the expected discounted future values of the hedged 
American put option V_CUR! (line 11). The hedged option process V_CUR mini-
mizes the variance of the hedge by investing Beta(S!*CUR!,V_CUR!) amount in 
the stock S (line 17). The function Beta(S!*CUR!,V_CUR!) computes the beta fac-
tor for its two arguments, where S!*CUR! is the explanatory variable and V_CUR! 
is the dependent variable. Assuming we are now at time t, the Beta(S!*CUR!,V_CUR!) 
function estimates the relationship between S!*CUR! and V_CUR! conditional on 
the information at time t, where S!, CUR! and V_CUR! take respectively the val-
ues of S, CUR and V_CUR at the immediate next model time. On each exercise date, 
we compare the expected discounted holding values of the American put option 
with its discounted intrinsic values and update accordingly the discounted option 
values (line 21 - line 23). At the option maturity time T, V_CUR is assigned the 
discounted American put payoffs (line 27). We discount to time 0 the processes 
V_CUR and S as well as the expression(K - S)so that future cash flows are always 
seen in present value terms.

The variables S, CUR and V_CUR are process variables with implicit scenario and 
time indexes, and their values are in plural form.

This completes the introductory tutorial “From European to American”. 
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7.2 Tutorial Hedging in ThetaML

7.2.1 Introduction 

This tutorial introduces a variety of hedging techniques in ThetaML. As a byprod-
uct, it also illustrates the simplicity and flexibility of using ThetaML for fast and 
accurate simulations. 

To start with, we compute, in ThetaML, the very familiar Black-Scholes delta, then 
use this Black-Scholes delta to simulate hedge European put option - stepping 
both forward and backward in time. In the end, we compare the hedged portfolio 
value with the exact European put price. Our first results produce the same Euro-
pean put price for forward and backward hedges, with a standard error of 0.84 
in both cases. 

Next, we present our unique Beta function and illustrate by examples its wide 
applicability and flexibility in more advanced hedge settings. We start with the 
more familiar variance minimal hedge - for single and multiple underlyings and 
for single- and multi-dimensional stochastic processes. We then proceed to apply 
our Beta function to static and dynamic portfolio hedging. Finally, our Beta func-
tion is applied in the real world hedging with transaction costs, demonstrated 
by code examples for portfolio rebalancing at constant intervals and for position 
changes above a certain barrier level.

In terms of naming conventions in the example ThetaML models, we use the suf-
fix _CUR for variables that are discounted to time 0 using the discount factors CUR. 
For example, in the code statement V_CUR = max(K - S, 0) * CUR, the variable 
V_CUR has suffix _CUR, because its right hand side values are discounted by CUR to 
time 0. By discounting to time 0, we always talk about future cash flows in present 
value terms.
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To proceed with presenting various hedging methods, we set up a hedge portfolio Π as

Π = V + d * S

with an option V and a position of d in the hedge instrument S. The task of the 
hedging procedure is to choose d such that the portfolio Π does not change much 
even if the underlying S changes.

7.2.2 Delta Hedging 

We start with a simple example where the process S is driven by a Geometric 
Brownian motion process with a drift equal to the risk-free rate r and volatility σ. 
This allows us to use the Black-Scholes-Merton equation to obtain a representa-
tion for d. The choice and use of d to hedge portfolio risk is called delta hedging.

The delta-hedge pricing method offsets the portfolio risk in such that it can be made 
completely risk free in the basic Black-Scholes economy. This is unrealistic in the real 
world, mainly because the hedge must be rebalanced continuously in time whereas 
a real trader can only buy and sell at discrete times. In this section, we will compute 
and analyze the errors that occur when using discrete instead of continuous hedges.

We use European put option as an example. The formula for European put option 
delta is known as

d = ∂V—∂S  = N�log �S―K�+�r + σ2�‒2    T——————————
σ√T

              � - 1

where N ( ) is the cumulative standard normal distribution, and the term 
∂V—∂S re-

fers to the partial derivative of V with respect to S.
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With this formula and the convenience that ThetaML can call any regular Matlab 
functions, it is very easy to obtain the delta of a European put option in ThetaML 
as what follows. 

For consistency, all subsequent code examples use the following assumptions and 
parameter values:

	Stochastic model for the stock price: Geometric Brownian Motion
	Volatility of the stock price : 0.4 (40% p.a.) 
	Risk-free interest rate : 0.05 (5% p.a.)
	Current stock price : 100
	Initial discount factor value CUR: 1
	Strike price of the option : 100
	Maturity time : 1
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The following code example is a ThetaML model for computing Black-Scholes 
delta.

 1:  model BlackScholesDelta
 2:  % This model returns the Black-Scholes hedge delta for a 
 3:  % European put option
 4:  import S   “Current stock price”
 5:  import K   “Strike price for the European put option”
 6:  import sigma “Volatility of the underlying stock”
 7:  import r   “Risk-free interest rate”
 8:  import T   “Time to maturity”
 9:  export delta  “Black-Scholes delta”
10:
11:  if T <= 0
12:  if S < K
13:  delta = 1;
14:  else 
15:  delta = 0;
16:  end
17:  else
18:  d1 = (log(S/K) + (r+(sigma^2)/2)*T ) / (sigma*sqrt(T));
19:  delta = normcdf(d1,0,1) - 1;
20:  end
21:
22:  end

In the model BlackScholesDelta, line 18 uses two mathematical functions log 
and sqrt. Line 19 calls a Matlab function normcdf to compute values of the cu-
mulative standard normal distribution.

Having computed the Black-Scholes delta in ThetaML, we proceed to use this 
analytical delta to simulate hedge portfolio values and compare the hedge error 
between the hedging portfolio and the option value. This is illustrated by the fol-
lowing code examples and hedge error histograms.



P a g e  | 170

The following code example is a ThetaML model for simulating hedging portfolio 
values forward in time, using the Black-Scholes delta as the hedge strategy for the 
underlying hedge instrument. It also computes the hedging error based on the 
analytical Black-Scholes option delta.

 1:  model DeltaHedge_Forwards
 2:  % This model simulates forward in time the delta hedge of a 
 3:  % European put option 
 4:  import S   “Stock prices”
 5:  import CUR   “Discount factors”
 6:  import sigma  “Volatility of the stock price”
 7:  import r   “Risk-free interest rate”
 8:  import K   “Strike price for the European put option”
 9:  export Pi_CUR  “Hedging portfolio value”
10:  export delta  “Black-Scholes hedge delta”
11:  export error  “Hedging error”
12:
13:  T = 1 % time to maturity of the option
14:  n = 252*T % loop length
15:  % Pi_CUR has the same expected value as V_CUR at time 0
16:  Pi_CUR = E(V_CUR!) 
17:
18:  loop n 
19:  % obtain the Black Scholes delta 
20:  call BlackScholesDelta
21:  export K, sigma, r, S 
22:  % @time has passed, the maturity is now T - @time
23:  export T - @time to T 
24:  import delta 
25: % update the previous stock price S_old
26:  S_old = S
27:  % update the previous discount factor CUR_old
28:  CUR_old = CUR
29:  % T/n time interval passes
30:  theta T/n 
31:  % update the hedging portfolio by delta amount of S 
32:  Pi_CUR = Pi_CUR + delta * (S*CUR - S_old*CUR_old)
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33:  end
34:  % option payoffs discounted to time 0
35:  V_CUR = max(K - S,0) * CUR
36:  % hedging error
37:  error = Pi_CUR – V_CUR 
38:
39:  end

In the model DeltaHedge_Forwards, the European put option maturity T is set to 
1 year (line 13), each year is assumed to have 252 trading days (line 14). 

The model DeltaHedge_Forwards imports the stock prices S and the discount 
factors CUR simulated externally in the model S_CUR_Processes in the Chapter 
Example of Chapter 3. The two processes S and CUR automatically synchronize in 
model time with processes in current model. As such, S and CUR take their respec-
tive values at the corresponding model time. For example, S and CUR at line 26 
and line 28 take their respective values at the model time executed respectively 
at that line of code. At line 35 they take their respective values at option maturity 
time T.

We initially set up the hedge portfolio Pi_CUR to have the same expected discount-
ed value as the European put option V_CUR (line 16). With time passing at constant 
T/n intervals (theta T/n at line 30), we optimally hedge the portfolio Pi_CUR us-
ing the Black-Scholes delta as the position taken in the underlying stock S (line 
32). This strategy is updated each time step T/n. At the option’s maturity T (line 
35), V_CUR is assigned the discounted option payoffs. Line 37 computes the hedg-
ing errors between the hedging portfolio values and the option values at option 
maturity T. 

We discount to time 0 the processes V_CUR and S so that future cash flows are 
always seen in present value terms. The variables S, CUR and V_CUR are process 
variables with implicit scenario and time indexes, their values are therefore writ-
ten in plural form.
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The following graph is the histogram of hedge error distribution for delta hedging 
the European put option with forward simulation. The exact value of the Euro-
pean put is 13.15 with a standard deviation of 0.84 for the hedge error.
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The following code example is a ThetaML model for simulating hedge portfolio 
values backward in time, using Black-Scholes delta as the hedge strategy for the 
underlying hedge instrument .

 1:  model DeltaHedge_Backwards
 2:  % This model simulates backward in time the delta hedge of a 
 3:  % European put option 
 4:  import S   “Stock prices”
 5:  import CUR   “Discount factors”
 6:  import sigma  “Volatility of the stock price”
 7:  import r   “Risk-free interest rate”
 8:  import K   “Strike price for the European put option”
 9:  export Pi_CUR  “Hedging portfolio value”
10:  export error  “Hedging error”
11: 
12:  T = 1 %time to maturity of the European put option
13:  n = 252*T %loop length
14:  error = Pi_CUR! - E(V_CUR!) %hedging error
15:  
16:  loop n 
17:  % obtain the Black Scholes delta
18:  call BlackScholesDelta
19:  export K, sigma, r
20:  export S to S
21:  export T - @time to T
22:  import delta
23:  % update the hedging portfolio
24:  Pi_CUR = Pi_CUR! – delta * (S!*CUR! - S*CUR) 
25:  theta T/n
26:  end
27:  % the hedging portfolio has the same value as V_CUR
28:  Pi_CUR = V_CUR!
29:  % at maturity T, option payoff is discounted to time 0
30:  V_CUR = max(K - S,0) * CUR
31:
32:  end

In the model DeltaHedge_Backwards, the European put option maturity T is set 
to 1 year (line 12), each year is assumed to have 252 trading days (line 13).
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The model DeltaHedge_Backwards imports the stock prices S and the discount 
factors CUR simulated externally in the model S_CUR_Processes in the Chapter 
Example of Chapter 3. The two processes S and CUR automatically synchronize in 
model time with processes in current model. As such, S and CUR take their respec-
tive values at the corresponding model time. For example, S and CUR at line 24 
take their respective values at the model time executed at that line of code. At line 
30 they take their respective values at option maturity time T.

The model DeltaHedge_Backwards computes the hedging error based on the 
analytic solution of the Black-Scholes delta. The error is computed in a back-
wards fashion, such that Pi_CUR always contains the exact amount of money re-
quired for a perfect replication. This is conditioned by setting Pi_CUR = V_CUR! 
at the option maturity time (line 28) together with the no-arbitrage theorem 
that two portfolios having the same price in the future will have the same price 
today. 

The backward-in-time style of hedging is facilitated with the ThetaML future op-
erator "!". As such, we are able to fix the future hedging portfolio value to the 
option’s discounted future payoffs (Pi_CUR = V_CUR! at line 28), respectively 
for all the simulation paths, and iterate backwards in time to arrive at current 
hedging portfolio values.

The hedging portfolio is assumed to be rebalanced at each trading day (line 24). 
The position taken in the hedging stock is delta, it is computed by calling the 
function BlackScholesDelta (line 18 - line 22) implemented in the model 
BlackScholesDelta.

The value of the hedging portfolio Pi_CUR is not deterministic and thus has a prob-
ability distribution at time 0. This distribution minus the option value E(V_CUR!) 
is the hedging error (line 14). The distribution for the hedging error is shown 
in the graph below.
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We discount to time 0 the processes V_CUR and S so that future cash flows are 
always seen in present value terms. The variables S, CUR and V_CUR are process 
variables with implicit scenario and time indexes, we therefore write their values 
in plural form.

As in the case of forward hedging, the value of the European put E(V_CUR), using 
Black-Scholes delta as the hedging strategy simulated backwards in time, is 13.15 
with a standard deviation of 0.84 for the hedging error.
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7.2.3 Variance Minimization by Hedging 

Even though theory dictates that financial markets do not allow arbitrage and 
that markets are complete, even though this no-arbitrage-and-complete-market 
theory has led to various breakthroughs in the previous decades, there is in Thet-
aML a unique technology that lies at the frontline of this derivatives research, by 
simply assuming that a real-world model for the underlying hedge instrument ex-
ists. Even though this view appears unconventional, we can obtain optimal hedg-
ing strategies for incomplete markets and in the presence of transaction costs.

Our optimal hedging strategies are computed by the function Beta. The Beta(S,V) 
function computes a variance minimal hedge based on the statistical properties 
of the underlying S and the instrument to be hedged V. 

Our unique Beta function allows using Monte Carlo pricing for many more real-
istic market scenarios other than the basic ones assumed in the Black-Scholes 
economy. Moreover, even in a Black-Scholes economy, our Beta function gives the 
same results as the Black-Scholes delta. This is illustrated by the following Thet-
aML code examples where the hedge instruments can be single- or multi-dimen-
sional stochastic processes, or single or multiple underlyings.
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7.2.3.1 Single Dimensional Stochastics

The case of beta hedging with single underlying, the underlying follows a single-
dimensional stochastic process:

 1:  model BetaHedge_SingleUnderlying
 2:  % This model simulates the optimal hedge of an American put
 3:  % option, written on a single underlying stock;
 4:  % note that this hedge is variance optimal for any 
 5:  % underlying process S
 6:  import S   “Stock prices”
 7:  import CUR   “Discount factors”
 8:  import sigma  “Volatility of the stock prices”
 9:  import r   “Risk-free interest rate”
10:  import K   “Strike price for the American put option”
11:  export Pi_CUR  “Hedging portfolio value”
12: 
13:  T = 1 % time to maturity of the put option
14:  n = 252*T % loop length
15: 
16:  loop n 
17:  % update the discounted hedging portfolio value 
18:  Pi_CUR = Pi_CUR! 
19:  - Beta(S!*CUR!, Pi_CUR!) * (S!*CUR! - S*CUR)
20:  % evaluate early exercise decisions
21:  if E(Pi_CUR!) < (K – S)*CUR
22:  Pi_CUR = (K – S)*CUR
23:  end 
24:  % time passing of T/n time interval 
25:  theta T/n
26:  end
27:  % hedging portfolio Pi_CUR has the same value as V_CUR
28:  Pi_CUR = V_CUR!
29:  % at maturity T, option payoffs discounted to time 0
30:  V_CUR = max(K - S,0) * CUR
31:
32:  end
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In the model BetaHedge_SingleUnderlying, the time to maturity of the American 
put option T is given as 1 year at line 13, and we assume there are 252 trading 
days in one year (line 14). 

The model BetaHedge_SingleUnderlying imports the stock prices S and the 
discount factors CUR simulated externally in the model S_CUR_Processes in the 
Chapter Example of Chapter 3. The two processes S and CUR automatically syn-
chronize in model time with processes in current model. As such, S and CUR take 
their respective values at the corresponding model time. For example, S and CUR 
at line 19 take their respective values at the model time executed at that line of 
code. At line 30 they take their respective values at option maturity time T.

The hedging portfolio Pi_CUR is set up as having the same value as the discount-
ed American put payoffs V_CUR. This is conditioned by setting Pi_CUR = V_CUR! 
at the option maturity time T (line 28) together with the no-arbitrage theorem 
that two portfolios having the same price in the future should be priced the 
same today. 

The portfolio Pi_CUR is updated at each T/n passing time interval (theta T/n at 
line 25), by investing an amount of Beta(S!*CUR!, Pi_CUR!) in the stock S (line 
19). The function Beta(S!*CUR!, Pi_CUR!)computes the beta factor for its two 
arguments, where S!*CUR! is the explanatory variable and Pi_CUR! is the depen-
dent variable. Assuming we are now at time t, the Beta(S!*CUR!, Pi_CUR!) func-
tion estimates the relationship between S!*CUR! and Pi_CUR! conditional on the 
information at time t, where S!, CUR! and Pi_CUR! take respectively the values of 
S, CUR and Pi_CUR at the immediate next model time.

Since the option is American, the hedged portfolio continuation value is com-
pared to the option’s exercise value at each possible exercise date. Depending on 
the evaluation result, the hedged portfolio value is accordingly updated (line 21 
- line 23). 
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We discount to time 0 the processes V_CUR and S so that future cash flows are 
always seen in present value terms. The variables S, CUR, Pi_CUR and V_CUR are 
process variables with implicit scenario and time indexes.
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The case of beta hedging with multiple underlyings, the underlyings follow sin-
gle-dimensional stochastic process:

 1:  model BetaHedge_MultipleUnderlyings
 2:  % This model simulates the optimal hedge of a European put
 3:  % basket option. The option is written on multiple
 4:  % underlyings with multiple strike prices; note: this hedge
 5:  % is variance optimal for any underlying process S 
 6:  import S   “Stock prices”
 7:  import CUR   “Discount factors”
 8:  import K   “Strike prices for the American basket put”
 9:  export delta  “Hedge position”
10:  export Pi_obs  “Hedging portfolio value”
11:  export P   “European put basket option price”
12:
13:  %P has the same expected value as Pi_CUR
14: 
15:  P = E(Pi_CUR!) 
16:  T = 1 % time to maturity of the basket option
17:  n = 252*T % loop length, assuming 252 trading days
18:
19:  loop n 
20:  % we can store the values of Pi_CUR at each time step
21:  % in the variable Pi_obs for examinations 
22:  Pi_obs = Pi_CUR! 
23:  % array loop, loop through the elements of the arrays 
24:  % S and delta!; delta! is defined after the array loop 
25:  loop s, d : S, delta!
26:  % update portfolio values for the component stocks
27:  Pi_CUR = Pi_CUR! - d * (s!*CUR! - s*CUR)
28:  end 
29:  % computes an array of beta factors 
30:  delta = Beta(S!*CUR!,Pi_CUR!)
31:  % time passing of T/n time interval
32:  theta T/n
33:  end
34:  % Pi_CUR is set equal to V_CUR! at maturity T 
35:  Pi_CUR = V_CUR!



P a g e  | 181

36:  % loop through the arrays of stocks S and strikes K, and 
37:  % assign the discounted payoffs to V_CUR
38:  loop s,k : S,K
39:  V_CUR = max(V_CUR!, (k - s) * CUR)
40:  end
41:
42:  V_CUR = 0 % cut-off value of option payoffs
43:  delta = 0 % liquidate the stock positions at maturity
44:
45:  end

In the model BetaHedge_MultipleUnderlyings, the European put option maturity 
T is set to 1 year (line 16), each year is assumed to have 252 trading days (line 17).

The model BetaHedge_MultipleUnderlyings imports the stock prices S and the 
discount factors CUR simulated externally. The two processes S and CUR automati-
cally synchronize in model time with other processes in current model. As such, 
S and CUR take their respective values at the corresponding model time. For ex-
ample, the processes S and CUR at line 30 take their respective values at the 
model time executed at that line of code. At line 38 and line 39 they take their 
respective values at the option maturity time T. Note in this model, the stock price 
processes S and the strike prices K are arrays.

At time 0, the European put option price P is set up as having the same expected 
value of the discounted hedging portfolio Pi_CUR. The values of the discounted 
hedging portfolio Pi_CUR are pinned at time T to the discounted payoffs of an 
exotic European put option V_CUR at line 35. By setting Pi_CUR = V_CUR! at the 
option maturity time T, the no-arbitrage theorem dictates that the two portfolios 
Pi_CUR and V_CUR should have the same price today. 

The payoffs of the exotic European put option V_CUR are defined by the code block 
from line 38 to line 40. 

We elaborate more on this payoff feature:
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The loop … end block loops through the array of strikes and stock prices, and as-
signs to V_CUR a set of vanilla put option payoffs. If we expand the loop, the set of 
payoffs look as follows:

V_CUR  =  max (V_CUR!, (K[1] – S[1]) * CUR)
V_CUR  =  max (V_CUR!, (K[2] – S[2]) * CUR)
  …

V_CUR  =  max (V_CUR!, (K[length(K)] – S[length(S)]) * CUR) 
V_CUR  =  0

where, for easier exposition, we use the square bracket [] to denote array index-
ing, and length() is the length of an array, K[length(K)] for example is the last 
array element of K. Since the payoff function uses the future referenced V_CUR (i.e. 
V_CUR!), the order of the code evaluation is backward in time. As such, we obtain 
first V_CUR = 0 at line 42. Then input this value 0 into the payoff profile V_CUR = 
max(0, (K[length(K)] – S[length(S)])*CUR), note that length(K) = length(S) 
per the definition of loop in ThetaML. Since this is the payoff value future refer-
enced by the V_CUR! before it, the payoff profile at index length(K)-1 is thus 
V_CUR = max(max(0, (K[length(K)]– S[length(S)])*CUR), (K[length(K)-1] 

– S[length(S)-1])*CUR). Continuing like this, we have the combined payoff for 
the exotic European put option:

V_CUR = max(max( … max(0, (K[length(K)]– S[length(S)])*CUR) … , (K[2] 

– S[2])*CUR), (K[1] – S[1])*CUR)

Having fixed the maturity payoffs, the portfolio Pi_CUR is then updated at each 
passing time interval T/n (line 27), by investing an amount of d in the compo-
nent stock s. The amount of d is an element of the array delta! who access the 
beta factors computed for the set of discounted stocks S!*CUR! in the portfolio 
Pi_CUR! (line 30). The array delta! is computed at each time step, starting from 
time 0 to time T - (T/n).
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Expanding the array loop line 25 - line 28, the code block look as follows:

Pi_CUR = Pi_CUR! - Beta[1]*(S[1]!*CUR! – S[1]*CUR)
Pi_CUR = Pi_CUR! - Beta[2]*(S[2]!*CUR! – S[2]*CUR)
…

Pi_CUR = Pi_CUR! - Beta[length(S)] * (S[length(S)]!*CUR! – 
S[length(S)]*CUR)

Pi_CUR = Pi_CUR_next

Define m = length(S), denote the portfolio value at the k-th loop as Pi_CUR[k] , 
the above set is put together as follows

Pi_CUR = ( … ((Pi_CUR_next - Beta[m]*(S[m]!*CUR! – S[m]*CUR))
- Beta[m-1]*(S[m-1]!*CUR! – S[m-1]*CUR)) … )
- Beta[1]*(S[1]!*CUR! – S[1]*CUR)

where, for easier exposition, we use the square bracket [] to denote array index-
ing. The term Pi_CUR_next equals V_CUR! at line 35. The above representation 
for Pi_CUR simply says that the portfolio value Pi_CUR is rebalanced for each stock 
by an amount of Beta[k] for the component stock S[k]. The portfolio rebalancing 
process starts from time 0 to one step before the option maturity, T – (T/n). At op-
tion maturity T, we liquidate the stocks by setting the array delta = 0 at line 43.
A special note about the future operator “!” in the array loop: the operator “!” 
after delta (line 25) and Pi_CUR (line 27) access their respective next value at 
the same time step, while the operator “!” after S at line 30 accesses the stocks’ 
future values at the next time step. 

We discount to time 0 the processes V_CUR, Pi_CUR and S so that future cash 
flows are always seen in present value terms. The variables S, CUR, Pi_CUR and 
V_CUR are process variables with implicit scenario and time indexes.
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7.2.3.2  Multi-Dimensional Stochastics

The exact same ThetaML Script is applicable to stock prices following higher di-
mensional stochastic processes. The only difference is that the imported stock 
price process is multi-dimensional process simulated externally in a simulation 
model.
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7.2.4 Static and Dynamic Hedging 

To further illustrate the wide applicability of our Beta function, we provide, among 
others, the following code examples for static and dynamic portfolio hedging.
The case of static portfolio hedging:

 1:  model Static_hedging
 2:  % This model applies our Beta function to static portfolio 
 3:  % hedging of a Barrier option 
 4:  import S   “Stock prices”
 5:  import CUR   “Discount factors”
 6:  export delta  “Hedge position”
 7:  export P_obs  “Hedged option price”
 8:
 9:  % declare delta as a float array of length 20 
10:  % declare Vt_CUR as a float array of length 20
11:  type delta float[20]
12:  type Vt_CUR float[20] 
13:  % store the present values of P_CUR! in the variable 
14:  % P_obs for examinations of the results 
15:  P_obs = P_CUR!
16:  % compute the beta factors for portfolio hedging
17:  delta = Beta(Vt_CUR!, V_CUR!)
18:  % loop through the arrays of delta and Vt_CUR
19:  loop d, v : delta, Vt_CUR 
20:  % set up the discounted hedging portfolio P_CUR at time 
21:  % 0,using the hedging instruments in the array Vt_CUR 
22:  P_CUR = P_CUR! - d * ( v! - E(v!) )
23:  end
24:  % the discounted hedging portfolio P_CUR initially
25:  % has the same distribution as the discounted Barrier 
26:  % option values V_CUR at time 0
27:  P_CUR = V_CUR! 
28:
29:  % the Barrier option to be hedged
30:  fork
31:  Loop 52
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32:  % one week passes 
33:  theta 1/52
34:  % check whether or not the stock prices S violate 
35:  % the barrier 120, for all Monte-Carlo paths
36:  if S > 120
37:  V_CUR = 0
38:  end 
39:  end
40:  % at 1 year maturity, the discounted option payoff 
41:  % is discounted to time 0
42:  V_CUR = max(100 - S,0) * CUR 
43:  end 
44:
45:  % build up the hedge instruments 
46:  index = 1
47:  loop 5
48:  % time passing of 1/5 year
49:  theta 1/5
50:  % the set of hedging instruments Vt_CUR maturing at 
51:  % this model time
52:  Vt_CUR[index] = max(100 - S, 0) * CUR
53:  Vt_CUR[index+1] = max(120 - S, 0) * CUR
54:  Vt_CUR[index+2] = max(S - 100, 0) * CUR
55:  Vt_CUR[index+3] = max(S - 120, 0) * CUR
56:  % update the array index
57:  index = index + 4
58:  end
59:
60:  end

In the model Static_hedging, we define two arrays using the type keyword - delta 
and Vt_CUR - to hold respectively the beta factors and the hedging instruments.

The model Static_hedging imports the stock prices S and the discount factors 
CUR simulated externally in the model S_CUR_Processes in the Chapter Example 
of Chapter 3. The two processes S and CUR automatically synchronize in model 
time with processes in current model. As such, S and CUR take their respective 
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values at the corresponding model time. For example, S and CUR at line 42 take 
their respectively values at option maturity time 1.

At line 17, the hedge ratios Beta(Vt_CUR!, V_CUR!) are pre-computed condi-
tional on current time information, the variables Vt_CUR! and V_CUR! are respec-
tively values of the discounted hedge instruments and values of the discounted 
barrier option at time 0. The discounted hedging portfolio P_CUR adjust its val-
ues using the computed hedge ratios for the respective hedging instruments (line 
22). The adjusting process is realized with the following loop block selectively 
copied from the model Static_hedging:

19:  loop d, v : delta, Vt_CUR 
22:  P_CUR = P_CUR! - d * ( v! - E(v!) )
23:  end
27:  P_CUR = V_CUR! 

The above array loop can be expanded as follows:

P_CUR = P_CUR! – delta[1] * ( Vt_CUR[1]! - E(Vt_CUR[1]!) )
P_CUR = P_CUR! – delta[2] * ( Vt_CUR[2]! - E(Vt_CUR[2]!) )
 …

P_CUR = P_CUR! – delta[length(delta)] * ( Vt_CUR[length(Vt_CUR)]! –
E(Vt_CUR[length(Vt_CUR)]!) )

P_CUR = V_CUR!

where length(delta) must equal length(Vt_CUR) per the definition of ar-
ray loop in ThetaML. We have used the square bracket [] to denote array index-
ing, for example, delta[1] means the first array element of the array delta, Vt_
CUR[length(Vt_CUR)] is the last array element of the array Vt_CUR. 

Since the discounted hedging portfolio P_CUR is referenced with the future opera-
tor “!”, the evaluation process of P_CUR is backward in time: 
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The discounted portfolio P_CUR initially has the same value distribution as the dis-
counted barrier option (P_CUR = V_CUR! at line 27). Define n = length(delta), 
k as the k-th element of the array of hedging instruments, the discounted portfolio 
P_CUR at the index element n is: 

P_CUR = V_CUR! – delta[n] * ( Vt_CUR[n]! - E(Vt_CUR[n]!) )

The discounted portfolio P_CUR at index n-1 is:

P_CUR = ( V_CUR! – delta[n] * ( Vt_CUR[n]! - E(Vt_CUR[n]!) ) ) 
 – delta[n-1] * ( Vt_CUR[n-1]! - E(Vt_CUR[n-1]!) )

Repeating this procedure, the discounted portfolio after looping through all the 
elements of the array is represented as:

P_CUR = ( … (( V_CUR! – delta[n] * ( Vt_CUR[n]! - E(Vt_CUR[n]!) ) ) 
 – delta[n-1] * ( Vt_CUR[n-1]! - E(Vt_CUR[n-1]!) ) ) … )
 – delta[1] * ( Vt_CUR[1]! - E(Vt_CUR[1]!) )

Mathematically, this is equivalent to

P_CUR = V_CUR! - ∑n
k=1 delta k  (Vt_CUR[k]!-E(Vt_CUR[k]!) ),

where P_CUR and V_CUR are respectively the discounted hedging portfolio and 
the discounted barrier option, the term Vt_CUR[k] is the k-th element of the ar-
ray of discounted hedging instruments. The term delta k denotes the hedge ratio 
for instrument Vt_CUR[k]. After the discounted portfolio is initially hedged with 
a delta k amount in the k-th instrument, we hold this position throughout the life-
time of the hedged barrier option.

The Beta(Vt_CUR!, V_CUR!) function at line 17 takes two arguments, the hedging 
instruments Vt_CUR! as the explanatory variables and the barrier option value V_
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CUR! as the dependent variable. Both the two function arguments involve the future 
operator “!”, their future values are determined in the following. 

The fork … end block from line 30 to line 43 runs the process of the discounted 
barrier option V_CUR, the loop … end block from line 47 to line 58 builds the 
discounted hedge instruments Vt_CUR. The fork … end statement and the theta 
command enable the two processes V_CUR and Vt_CUR run virtually in parallel 
in model time. This is as if the second loop … end block (line 47 - line 58) were 
implicitly forked.

In the first loop … end block (line 31 to line 39), we check every week (1/52) 
whether the stock price is above the barrier or not, if it is, the barrier option is 
knocked out; otherwise, the option remains alive. At year 1 (52*(1/52)), we reach 
the maturity of the barrier option and assign the discounted payoffs to V_CUR. 

In the loop for the hedging instruments (line 47 to line 58), at time 1/5, the first 
4 hedging instruments mature and are given their respective discounted payoff 
values. After another 1/5 time - at time 2/5, another 4 of the hedging instruments 
mature and are assigned their respective discounted payoffs. Continuing this pro-
cedure, at time 1 (5*(1/5)), the last 4 hedging instruments get their respective 
discounted payoffs. 

We discount to time 0 the processes V_CUR and Vt_CUR so that future cash flows are 
always seen in present value terms. The discount factors CUR decay at a constant risk-
free rate r, as such all the variable processes at a certain time point are discounted by 
the same discount factor maturing at that time point. The variables S, CUR, Vt_CUR 
and V_CUR are process variables with implicit scenario and time indexes.

Computationally, we evaluate first the payoff functions at maturity time 1, then 
updating each of the processes according to their respective process features, 
continuing this way backwards to arrive their respective values at current time.
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The case of dynamic portfolio hedging:

 1:  model Dynamic_hedging
 2:  % This model applies our Beta function to dynamic portfolio
 3:  % hedging
 4:  import S   “Stock prices”
 5:  import CUR   “Discount factors”
 6:  export Pi_obs  “Dynamically hedged portfolio values”
 7:  export V_obs  “Unhedged barrier option prices” 
 8:
 9:  % store the present values of the barrier option in 
10:  % V_obs, and store the values of the hedging portfolio 
11:  % in the variable Pi_obs for examinations of results
12:  V_obs = V_CUR!
13:  Pi_obs = Pi_CUR!
14: 
15:  % dynamic portfolio hedging 
16:  fork 
17:  loop 252
18:  % rebalance the discounted portfolio Pi_CUR
19:  Pi_CUR = Pi_CUR! - Beta(S!*CUR!, Pi_CUR!) 
20:  * (S!*CUR! - S*CUR)
21:  % 1 trading day passes
22:  theta 1/252
23:  end
24:  end
25:
26:  % barrier option 
27:  fork
28:  loop 52
29:  % one week passes
30:  theta 1/52
31:  % check if the stock prices S violates 
32:  % the barrier 120
33:  if S > 120
34:  % if the barrier is violated, the discounted barrier 
35:  % option V_CUR is knocked out and the discounted 
36:  % hedging portfolio Pi_CUR has zero values, for the 
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37:  % violated simulation paths
38:  V_CUR = 0
39:  Pi_CUR = 0
40:  end 
41:  end
42:  % the discounted hedging portfolio Pi_CUR has the same 
43:  % distribution as the discounted barrier option V_CUR 
44:  % at the option maturity time
45:  Pi_CUR = V_CUR!
46:  V_CUR = max(100 - S,0) * CUR 
47:  end
48:
49:  end

The model Dynamic_hedging is a good example for the use of the fork … end 
statement. The body of the model is formed by two fork … end blocks that run 
virtually in parallel in model time. The first fork … end block (line 16 - line 24) 
runs the process of a discounted hedging portfolio Pi_CUR, the second fork … end 
block (line 27 - line 47) runs the process of a barrier option V_CUR and checks 
the barriers for the discounted barrier option V_CUR and the discounted hedging 
portfolio Pi_CUR. 

The model Dynamic_hedging imports the stock prices S and the discount factors 
CUR simulated externally in the model S_CUR_Processes in the Chapter Example 
of Chapter 3. The two processes S and CUR automatically synchronize in model 
time with processes in current model. As such, S and CUR take their respective 
values at the corresponding model time. For example, S and CUR at line 46 take 
their respective values at option maturity time 1.

In the first fork … end block (line 16 - line 24), the discounted portfolio Pi_CUR 
is rebalance at a constant time interval 1/252. The portfolio rebalancing process 
is realized with the loop … end loop (line 17 - line 23). In the loop, at each pass-
ing time of 1/252, the discounted portfolio values are updated by the amount of 
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Beta(S!*CUR!, Pi_CUR!) in the underlying stocks S. The Beta function computes 
the factor loadings for the discounted stock prices S!*CUR! with respect to the 
discounted portfolio values Pi_CUR!, conditional on the information available at 
that passing model time. 

In the second fork … end block (line 27 - line 47), we check at every 1/52 time 
interval whether the stock S has breached the barrier 120 or not, if it has, the 
discounted barrier option V_CUR is knocked out and the discounted hedging port-
folio value Pi_CUR is set to 0; this is done for all the Monte-Carlo simulation paths. 
At time 1 (52*(1/52)), the barrier option has the discounted payoffs max(100 - 
S,0) * CUR (line 46), and the hedging portfolio Pi_CUR gets the same discounted 
payoffs (Pi_CUR = V_CUR! at line 45, where V_CUR! takes the value of V_CUR at 
line 46).

The variables S, CUR, Pi_CUR and V_CUR are process variables with implicit sce-
nario and time indexes.

The processes V_CUR and S are discounted to time 0 so that we always talk about 
future cash flows in present value terms. The discount factors CUR decay at a con-
stant risk-free rate r, as such all the variable processes at a certain time point are 
discounted by the same discount factor maturing at that time point. 

Computationally, both of the payoff functions at maturity time 1 are evaluated 
first, then each of the processes are updated according to their respective process 
features. Continuing backwards in time, we arrive at their respective values at 
time 0.
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7.2.5 Transaction Costs 

Our unique Beta function also computes optimal hedging strategies in the pres-
ence of transaction costs. We show two such code examples below - one for port-
folio rebalancing at constant time interval and one for portfolio rebalancing only 
when the underlying position changes are above a certain barrier.

The case of portfolio rebalancing at constant time interval:

 1:  model BetaHedge_TCost_ConstInterval
 2:  % This model applies our Beta function to hedge a European 
 3:  % put option in the presence of transaction cost, the 
 4:  % portfolio is rebalanced at constant time interval
 5:  import S   “Stock prices”
 6:  import CUR   “Discount factors”
 7:  import K   “Strike price for the European put option”
 8:  import T   “Time to maturity”
 9:  export Pi_CUR  “Option value”
10:  export Pif_CUR  “Hedged option value”
11:  export Error  “Hedging error”
12:  export delta  “Hedge position”
13: 
14:  n = 252   % loop length
15:  kappa = 0.01  % level of transaction cost
16:  % the forward hedged portfolio Pif_CUR initially has the 
17:  % same expected value as the discounted backward hedging 
18:  % portfolio Pi_CUR
19:  Pif_CUR = E(Pi_CUR!) 
20:  delta_old = 0  % old delta, backward hedging
21:  delta_old_f = 0  % old delta, forward hedging
22:  % initialize the discounted old stock values Sold_CUR to 
23:  % the discounted current stock values S*CUR
24:  Sold_CUR = S*CUR 
25:
26:  loop n
27:  % optimally update the discounted backward-hedging 
28:  % portfolio Pi_CUR considering transaction costs 
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29:  Pi_CUR = Pi_CUR! - delta!*(S!*CUR! - S*CUR) 
30:  + kappa * abs( (delta_old! - delta!)*S*CUR) 
31:  % limit the position in stock S to [-1, 0] since the 
32:  % hedged option is a put option
33:  delta = min(0, max(-1, Beta(S!*CUR!,Pi_CUR!)))
34:  % update delta_old which is computed in the 
35:  % next model time
36:  delta_old = delta! 
37:  % time passing of T/n time interval
38:  theta T/n
39:  % if the position taken in the stock S has changed from
40:  % the previous one, rebalance the portfolio
41:  if (abs(delta - delta_old_f) >= 0.0) & @time < T
42:  Pif_CUR = Pif_CUR + delta * (S*CUR – Sold_CUR) 
43:  – kappa * abs( (delta_old_f - delta)*S*CUR) 
44:  % update the old discounted stock price
45:  Sold_CUR = S*CUR
46:  % update the old delta
47:  delta_old_f = delta 
48:  end
49:  end
50:  % at option maturity, for forward hedged portfolio: unwind 
51:  % the position in stocks, including transaction costs
52:  Pif_CUR = Pif_CUR - kappa * abs( (delta_old_f - 0)*S*CUR) 
53:  % liquidate stock positions at option maturity
54:  delta = 0 
55:  % at option maturity, for backward hedging portfolio: set 
56:  % the hedging portfolio Pi_CUR to the values of discounted 
57:  % option payoffs V_CUR
58:  Pi_CUR = V_CUR!
59:  % discounted option maturity payoffs
60:  V_CUR = max(K - S,0) * CUR
61:  % hedging error
62:  Error = V_CUR - Pif_CUR
63:
64:  end

In the model BetaHedge_TCost_ConstInterval, the European put option matu-
rity T is imported as an input parameter, each year is assumed to have 252 trading 
days (line 14). Transaction cost is a constant kappa at line 15.
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Hedging in the presence of transaction cost is based on the idea that, at option ma-
turity time, we can fix the hedging portfolio value to the known option maturity 
payoff. By the no-arbitrage theorem, two portfolios having the same cash flows in 
the future should have the same price today. By pinning the hedging portfolio value 
to the option maturity payoff, we are able to hedge the portfolios backwards in time 
with an optimal hedge ratio for each portfolio rebalancing date. The optimal hedge 
ratio is computed based on the value of the hedging portfolio in the presence of 
transaction cost, conditional on the filtration of current stock prices. Continuing 
iteratively back to the current time, the so-hedged two portfolios should have about 
the same price, depending on the optimality of the hedge ratios.

In ThetaML, the Beta function is thus defined such that it is variance optimal for 
almost any underlying process. 

The model BetaHedge_TCost_ConstInterval imports the stock prices S and the 
discount factors CUR simulated externally in the model S_CUR_Processes in the 
Chapter Example of Chapter 3. The two processes S and CUR automatically syn-
chronize in model time with processes in current model. As such, S and CUR take 
their respective values at the corresponding model time. For example, S and CUR 
at line 29 takes their respective values at the model time executed at that line of 
code. At line 60, S and CUR take their respective values at option maturity time T.
The backward hedging portfolio Pi_CUR is set up in order to obtain better esti-
mates for hedge ratios that are computed using the Beta function. 

At maturity time T, the backward-hedging portfolio Pi_CUR has the same value 
distribution as the discounted European put option payoffs (line 58 - line 60). 
Going backwards in time, the portfolio Pi_CUR is dynamically hedged using an 
optimal hedge ratio obtained from the Beta(S!*CUR!,Pi_CUR!)function; in the 
meantime, the hedging portfolio values are adjusted by an amount of transac-
tion costs at kappa of the changes in stock investments (line 29 - line 30). 
The Beta(S!*CUR!,Pi_CUR!) function takes two arguments, the first argument 
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S!*CUR! is the explanatory variables and the second argument Pi_CUR! is the de-
pendent variable. Both of the two function arguments assess their future values 
via the future operator “!”. The Beta(S!*CUR!,Pi_CUR!) function computes an 
optimal factor loading based on the hedging portfolio value Pi_CUR in the pres-
ence of transaction costs, conditional on the then passing model time. 

Line 33 limits the computed Beta values to an interval of -1 to 0, since the hedged 
option is a put option. The delta! at line 29 and line 30 accesses the next delta 
value computed in line 33. The delta_old! at line 30 accesses the next delta_
old in line 36. As such, the term (delta_old! - delta!) computes changes 
between the stock positions taken at the next and current model time.

The hedged option value Pif_CUR is set up initially to have the same expected 
value as the backward-hedging portfolio value Pi_CUR (line 19) at time 0. With 
time passing, the forward hedged option value Pif_CUR is dynamically updated 
with position delta in the underlying S (line 42), only when the position has 
changed from the previous portfolio update (line 41). The delta in line 41, line 
42 and line 43 is computed in line 33 based on the backward-hedging portfolio 
Pi_CUR. As such, the term abs(delta_old_f - delta) computes change(s) of 
stock positions taken between previous and current model time. At option matu-
rity, when we liquidate the stock positions, we adjust the forward hedging portfo-
lio Pif_CUR by the corresponding amount of the transaction cost (line 52).

The variables S, CUR, Pi_CUR and Pif_CUR are process variables with implicit sce-
nario and time indexes.

The processes V_CUR and S are discounted to time 0 so that we always talk about 
future cash flows in present value terms. The discount factors CUR decay at a con-
stant risk-free rate r, as such all the variable processes at a certain time point are 
discounted by the same discount factor maturing at that time point. 
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The case of portfolio rebalancing only when changes in the underlying positions 
are above a certain barrier:

 1:  model BetaHedge_TCost_PositionBarrier
 2:  % This model applies our Beta function to hedge a European 
 3:  % put option in the presence of transaction cost; the 
 4:  % portfolio is rebalanced only when the positions in 
 5:  % underlying hedge instruments change more than some level 
 6:  import S   “Stock prices”
 7:  import CUR   “Discount factors”
 8:  import K   “Strike price for the European put”
 9:  import T   “Time to maturity”
10:  export Pi_CUR  “Option value”
11:  export Pif_CUR  “Hedged option value”
12:  export Error  “Hedging error”
13:  export delta  “Hedge ratios”
14: 
15:  n = 252   % loop length
16:  kappa = 0.01  % level of transaction cost
17:  % the forward hedged portfolio Pif_CUR initially has the 
18:  % same expected value as the discounted backward hedging 
19:  % portfolio Pi_CUR
20:  Pif_CUR = E(Pi_CUR!) 
21:  delta_old = 0  % old delta, backward hedging
22:  delta_old_f = 0  % old delta, forward hedging
23:  % initialize the discounted old stock values Sold_CUR to 
24:  % the discounted current stock values S*CUR
25:  Sold_CUR = S*CUR 
26:
27:  loop n
28:  % optimally update the discounted backward-hedging 
29:  % portfolio Pi_CUR considering transaction costs 
30:  Pi_CUR = Pi_CUR! - delta!*(S!*CUR! - S*CUR) 
31:  + kappa * abs( (delta_old! - delta!)*S*CUR) 
32:  % limit the position in stock S to (-1, 0), since the 
33:  % hedged option is a put option
34:  delta = min(0, max(-1, Beta(S!*CUR!,Pi_CUR!)))
35:  % update delta_old which is computed in the 
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36:  % next model time
37:  delta_old = delta! 
38:  % time passing of T/n time interval
39:  theta T/n
40:  % if the position changes in the stock S is above 0.05,
41:  % rebalance the portfolio Pif_CUR
42:  if (abs(delta - delta_old_f) >= 0.05) & @time < T
43:  Pif_CUR = Pif_CUR + delta * (S*CUR – Sold_CUR) 
44:  – kappa * abs( (delta_old_f - delta)*S*CUR) 
45:  % update the old discounted stock price
46:  Sold_CUR = S*CUR
47:  % update the old delta
48:  delta_old_f = delta 
49:  end
50:  end
51:  % at option maturity, for forward hedged portfolio: unwind 
52:  % the position in stocks, including transaction costs
53:  Pif_CUR = Pif_CUR - kappa * abs( (delta_old_f - 0)*S*CUR) 
54:  % liquidate the stock positions at option maturity
55:  delta = 0
56:  % at option maturity, for backward hedging portfolio: set 
57:  % the hedging portfolio Pi_CUR to the values of discounted 
58:  % option payoffs V_CUR
59:  Pi_CUR = V_CUR!
60:  % discounted option maturity payoffs
61:  V_CUR = max(K - S,0) * CUR
62:  % hedging error
63:  Error = V_CUR - Pif_CUR
64:
65:  end

In the model BetaHedge_TCost_PositionBarrier, the European put option ma-
turity T is imported as an input parameter, each year is assumed to have 252 trad-
ing days (line 15). Transaction cost is a constant kappa at line 16.

The model BetaHedge_TCost_PositionBarrier imports the stock prices S and the 
discount factors CUR simulated externally in the model S_CUR_Processes in the 
Chapter Example of Chapter 3. The two processes S and CUR automatically synchro-
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nize in model time with processes in current model. As such, S and CUR take their 
respective values at the corresponding model time. For example, S and CUR at line 
30 take their respective values at the model time executed at that line of code. At 
line 61, S and CUR take their respective values at option maturity time T.

The ThetaML code statements are very similar to those in the model BetaHedge_
TCost_ConstInterval. The only difference lies in line 42, where the hedged 
portfolio value Pif_CUR is adjusted only when the position changes are above 
the level of 0.05. This reduces the hedging frequency and thus transaction costs. 
This is more reasonable in cases where the volatilities of the underlying prices 
are small.

The backward-hedging portfolio value Pi_CUR is fixed at maturity time T to the 
European put option payoff (line 59), then iteratively going backwards in time, 
the portfolio Pi_CUR is dynamically hedged using an optimal hedge ratio obtained 
from the Beta function; in the meantime, the portfolio values are adjusted by an 
amount of transaction costs at kappa of the changes in stock investments (line 
30 - line 31). 

Line 34 limits the computed Beta values to an interval of -1 to 0 for put option. 
The delta! at line 30 and line 31 accesses the next delta value computed in 
line 34. The delta_old! at line 31 accesses the next delta_old in line 37. As 
such, the term abs(delta_old! - delta!) computes changes in stock positions 
between next and the current model time.

The hedged option value Pif_CUR is set up initially to have the same expected 
value as the backward-hedging portfolio value Pi_CUR (line 20). With time pass-
ing, the portfolio value Pif_CUR is dynamically updated with position delta in 
the underlying S (line 43), only when the position has changed from the previ-
ous update by a factor of 0.05 (line 42). The delta in line 42, line 43, line 44 and 
line 48 are computed in line 34. As such, the term abs(delta_old_f - delta) 
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computes change(s) of stock positions between the previous and current one(s). 
At option maturity, when we liquidate the stock positions, we adjust the forward 
hedging portfolio Pif_CUR by the corresponding amount of the transaction cost 
(line 53).

The variables S, CUR, Pi_CUR and Pif_CUR are process variables with implicit sce-
nario and time indexes.

The processes V_CUR and S are discounted to time 0 so that we always talk about 
future cash flows in present value terms. The discount factors CUR decay at a con-
stant risk-free rate r, as such all the variable processes at a certain time point are 
discounted by the same discount factor maturing at that time point. 

This completes our tutorial “Hedging in ThetaML”. 
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8 ThetaML Tips and Tricks

When working with ThetaML, there are various 
techniques which can be used to improve the speed 
and accuracy of Monte-Carlo simulations with 
ThetaML models. This chapter explains the most 
important ones.



P a g e  | 202

8.1 Nested if Improves Speed 

	 Avoid evaluating conditional functions that returns zero 

The most costly operation in pricing options is the evaluation of conditional sto-
chastic functions such as E and Beta. The time complexity of such an operation is 
at least of order O(n2) with n as the number of Monte-Carlo paths. In many cases, 
we can selectively reduce the simulated paths to the most relevant ones before 
doing any computations with the conditional functions E and Beta. 

As an example, consider the following if … end block: 

  if E(V_CUR!) < (K – S)*CUR
  V_CUR = (K – S)*CUR

  end

Since we know in advance that E(V_CUR!) must be greater than zero, we restrict 
the whole computations to those simulation paths where (K – S)*CUR is greater 
than zero.
 
 if 0 < (K – S)*CUR
   if E(V_CUR!)< (K – S)*CUR
    V_CUR = (K – S)*CUR

   end
 end
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8.2 Reducing Variance by Hedging Improves Convergence 

	 The Beta function reduces the variance of simulated option prices thus 
increases the accuracy of price estimates. 

The following two models American and American_hedged have similar runtimes 
but the model American_hedged returns option values of higher precision as a 
result of using the Beta function. 

model American 
% Model American simulates prices for an American put option 
 import S  “Stock prices” 
 import CUR  “Discount factors” 
 import sigma  “Volatility” 
 import r  “Interest rate” 
 import K  “Strike price” 
 export P  “Option value” 
 
 % current option value 
 P = E(V_CUR!) 
 % time to maturity of the option 
 T = 1 
 % n loops, assuming daily exercise interval and
 % 252 trading days in a year 
 n = 252*T 
 loop n
 % evaluate optimal exercise conditions, compare estimated 
 % discounted hold values E(V_CUR!) with discounted 
 % intrinsic values, for all Monte-Carlo paths 
 if E(V_CUR!)< (K - S)*CUR
 V_CUR = (K - S)*CUR 
 end 
 % time passing of T/n
 theta T/n 
 end 
 % at maturity, option payoffs are discounted to time 0 
 V_CUR = max(K - S,0)*CUR 
end 
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model American_hedged
% Model American_hedged simulates the optimal hedge of an 
% American put option; note that this hedge is variance 
% optimal for any underlying process S
 import S  “Stock prices” 
 import CUR  “Discount factors” 
 import sigma “Volatility” 
 import r  “Interest rate”
 import K  “Strike price” 
 export P  “Option value” 
 
 % current option value
 P = E(Pi_CUR!)
 % time to maturity
 T = 1
 %n loops 
 n = 252*T
 loop n 
 % hedge the discounted portfolio Pi_CUR using Beta function 
 Pi_CUR = Pi_CUR! – Beta(S!*CUR!,Pi_CUR)*(S!*CUR! - S*CUR)
 % evaluate optimal exercise conditions, compare estimated 
 % discounted hold values E(Pi_CUR!) with discounted 
 % intrinsic values, for all Monte-Carlo paths
 if E(Pi_CUR!) < (K – S)*CUR
 Pi_CUR = (K – S)*CUR
 end
 % time passing of T/n
 theta T/n
 end
 % at option maturity, the hedged portfolio has the same value
 % distribution as the discounted option payoffs
 Pi_CUR = V_CUR!
 % at maturity, the option payoff is discounted to time 0
 V_CUR = max(K - S,0)*CUR
end
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8.3 Adding Control Variables Can Improve Accuracy 

	 Using additional information available, we can significantly improve the 
numerical accuracies of conditional expected values such as E and Beta

In the model European_S_control, the underlying S is simulated with no drift, as 
such we can use its price at time 0 as an estimate of its expected value at time 1. 
We can then use this knowledge to compute a better estimate P for the expected 
value of V_CUR as follows: 

model European_S_control
% Pricing a European put option with S as control variable 
  import S  “Stock prices”
  import CUR  “Discount factors”
  import K  “Option strike price”
  export P  “Option price”

  % use S as control variable for better price estimates P
  P = V_CUR! - Beta(S_control!,V_CUR!) * (S_control! - S)

  % 1 time unit passes
  theta 1

  % S_control has expected value S 
  S_control = S
  % at maturity, the option payoff is discounted to time 0
  % S is already discounted since it is simulated with no drift
  V_CUR = max(K*CUR - S,0)
end
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We can even go a little further and include other knowledge like the closed-form 
solution of a European option price and use it to estimate an American option price: 

% Pricing an American put option with a European put option as 
% control variable
model American_Vcontrol
  import S  “Stock prices”
  import CUR  “Discount factors”
  import K  “Option strike price”
  import sigma  “Volatility”
  import r  “Risk-free rate”
  export P  “Option price”

  % use European option V_control as control variable 
  % V_control has expected value V_ref 
  P = V_CUR! - Beta(V_control,V_CUR) * (V_control! - V_ref!)
  % V_ref is computed using the closed form formula for the 
  % European put option; the function arguments for myBlsprice 
  % are respectively: stock price, strike price, volatility, 
  % interest rate, option maturity, and option type ‘call’;
  % the option price V_ref is discounted to time 0 by CUR, this
  % is to be consistent with its simulated counterpart V_control 
  V_ref = myBlsprice(S, K, sigma, r, 1, 0)*CUR
  %loop 52 times
  loop 52
  % time passing of one week
  theta 1/52
  % early exercise evaluation: compare the expected discounted
  % hold values E(V_CUR!) with discounted option intrinsic 
  % values, for all the Monte-Carlo simulation paths
  if E(V_CUR!) < (K - S)*CUR
  V_CUR = (K - S)*CUR
  end
  end
  % at maturity 1, the control variable V_control has the same 
  % discounted payoffs as the American put option V_CUR
  V_control = V_CUR! 
  % at maturity 1, the payoff is discounted to time 0
  V_CUR = max(K - S,0)*CUR
end
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8.5 Avoiding Direct Assignment of Expected Values Im-
proves Accuracy 

	We can improve the accuracy of option price estimates by avoiding direct 
assignments of the expected values from functions E and Beta

The expected value function E generates approximation errors and should only be 
used when a (statistical) expected value is required. For example, in a compound 
option, it is advisable not to use the E function for both decisional and computa-
tional steps: 

model compound
  ...
  theta 1
  %time 1 outer option payoffs, E(V_inner) is the expected value 
  %of the inner option conditional on time 1 information
  V = max( E(V_inner!)- K_outer, 0 )

  theta 1
  %time 2 inner option payoffs
  V_inner = max(S - K_inner,0)

end
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Instead, the decisional and computational parts should be separated as follows:
 
model compound

 ...
 
 theta 1
 % at time 1, evaluate the outer option payoffs 
 % E(V_inner!) is the expected value of the inner option, 
 % conditional on time 1 information
 if E(V_inner!) - K_outer > 0

 V = V_inner! - K_outer
 else

 V = 0
 end

 theta 1
 % at time 2, inner option payoffs
 V_inner = max(S - K_inner,0)

end
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8.6 Keep Export Variables Unique 

	 Export variables serve to report (return) results of a model. If they are also 
used to store temporary results, the exported results will get clogged. This 
situation can be avoided by keeping assignments to export variables unique. 

In the following code, the first instance of x is a temporary result that gets incor-
rectly reported: 

model test
 export x % results of x get clogged
 ...

 x = x/(n-1) % x has the temporary results

 x = x + S/n

 ...

end

Storing the intermediate results in a temporary variable keeps the reporting of x 
unique: 

x_tmp = x % store x in a temporary variable x_tmp

x_tmp = x_tmp/(n-1) % doing computations with x_tmp

x_tmp = x_tmp + S/n % doing computations with x_tmp

x = x_tmp % assign x_tmp to x and report x
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LSMC. See Least Squares Monte Carlo

M
Markov states, 92, 98
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Matlab, 82, 151
Matlab function, 82-84
Matlab stepping object, 85-87
model, 46, 50-52
Model arguments, 46
model file, 28-29, 36, 39-40
model time, 16-21, 24, 26, 30-31, 54-56, 58-59, 61, 77, 82, 95, 101, 111, 113, 120, 

156-157, 160
multiple arrays, 74

N
naming convention, 47

O
Open in Excel, 32-33
Open in Matlab, 32

P
portfolio hedging, 166, 185, 190
post conditions, 12, 18
Pre- and post-conditions, 12, 18
pre- and post-processing, 141
process variables, 101, 118, 156
project, 35-36
Project Explorer, 28, 35-36

R
run, 149-150
Runtime parameters, 29, 40
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S
Sample Project, 28
stepping function, 82, 85, 90, 94, 96, 98, 101
submodel, 76

T
theta, 16, 20-21, 24, 54-56, 58-62, 70-72, 95, 106, 110, 112-113
Theta Orchestrator, 128
Theta Suite, 27
Theta Suite Result Explorer, 30-32, 47
Thetagram, 10-11, 28
ThetaML, 9-19
ThetaML Configurator, 28, 32
Time-step filter, 31
Tips and Tricks, 201
transaction costs, 193
type, 49, 67-68, 126-129, 185
type extraction, 125, 143

V
Value assertions, 139
variables, 46-48, 120, 125
variance optimal hedge, 164

W
workflow, 142, 150
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ThetaML is a modeling language developed by Thetaris. It describes financial 
products in a simple and general way. ThetaML introduces tools for intuitive mod-
el design, powerful analyses and automated productions. It focuses on financial 
product structural features and abstracts these structural features from model 
processes and numerical details. 

As domain specific language, ThetaML bundles together functional and procedur-
al programming styles. Important features of this language include:

	Domain specific language for financial contract design

	 Programming in chronological order and computational order

	 Implicit handling of scenario- and time- indices

	 Virtual multi-threading of paralleled models

	 Built-in conditional expectations of financial variables

	 Pre- and post-conditions on models to ensure model correctness

This book documents the language syntax of ThetaML. It starts with a summary 
of the language features, followed by a chapter on ThetaML language syntax. The 
ThetaML type system, interfaces and workflows are detailed in later chapters. 
There are many code examples to help understand the language commands and 
functions. Two tutorials further apply ThetaML to pricing and hedging financial 
contracts. The final chapter offers many tips and tricks for more efficient use of 
ThetaML in financial settings. 


