
ThetaML Handbook

Stefan Dirnstorfer
Andreas J. Grau

Hongzhu Li

edition winterwork

Bibliografische Informationen der Deutschen Nationalbibliothek:
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliog-
raphie. Detaillierte bibliographische Daten im Internet über http://www.d-nb.de abrufbar.

Nachdruck oder Vervielfältigung nur mit Genehmigung des Verlages gestattet. Verwendung oder
Verbreitung durch unautorisierte Dritte in allen gedruckten, audiovisuellen und akustischen Me-
dien ist untersagt. Die Textrechte verbleiben beim Autor, dessen Einverständnis zur Veröffentlic-
hung hier vorliegt. Für Satz- und Druckfehler keine Haftung.

Impressum

S. Dirnstorfer, A. J. Grau, H. Li, ThetaML Handbook

www.thetaris.com
www.edition-winterwork.de

© 2012 edition winterwork
Alle Rechte vorbehalten.

Alle Rechte vorbehalten.
Satz: Christin Kallasch / edition winterwork
Umschlag: edition winterwork
Druck und Bindung: winterwork Borsdorf

ISBN 978-3-86468-089-2

ThetaML Handbook

Stefan Dirnstorfer
Andreas J. Grau
Hongzhu Li

Preface

ThetaML, the Theta Modeling Language, was born in the financial laboratories of
Thetaris GmbH. Constant refinement with financial practitioners world wide has
allowed us to create a financial modeling language that fits the needs of the highly
agile and computationally demanding engineering tasks.

As a domain specific language, ThetaML is designed for pricing financial deriva-
tives, selecting optimal investment strategies and managing investment risks.
ThetaML employs a modular approach to separate the structure of financial prod-
ucts from the model stochastics and numerical details. It represents the details
of financial contracts in the natural time order of contract-specified events. Thet-
aML programs in chronological order and streamlines code notations.

This handbook is aimed primarily at practitioners working in the financial service
industry. We believe much of the material will hold significant appeal to those
who are interested in exploring new approaches of financial modeling and that
this book will satisfy their mental curiosity. Students and academics interested in
financial engineering will find this book particularly useful for its versatile mod-
eling approaches and the simplicity of model presentation. We hope the material
will help them to approach problem solving in financial modeling in a even more
flexible way.

This handbook provides a comprehensive introduction to the ThetaML language.
It uses a clear and tutorial approach to explain the language syntax, enhanced
with many code examples and graphical aids. It also provides tutorials that apply
the ThetaML language in financial settings.

January 18, 2012 Stefan Dirnstorfer
Andreas J. Grau

Hongzhu Li

P a g e | 4

P a g e | 5

Contents

1 Introducing ThetaML 9
1.1 The ThetaML Language 10
1.2 ThetaML Language Features 12

1.2.1 Domain Specific Language for Contract Design 12
1.2.2 Programming in chronological order and computational order 14
1.2.3 Built-in conditional expectations 16
1.2.4 Implicit handling of both scenario- and time- indices 17
1.2.5 Virtual multi-threading 17
1.2.6 Pre- and post-conditions to ensure model quality 18

1.3 The Basis of ThetaML 19
1.4 The Structure of This Book 22

2 ThetaML Quick Tour 23
2.1 ThetaML Language Commands and Functions 24
2.2 Running ThetaML Example Models with Theta Suite 27
2.3 Creating and Running ThetaML Models 35

2.3.1 Creating a ThetaML Model 35
2.3.2 Running and Evaluating the ThetaML model 39

3 ThetaML Syntax Reference 45
3.1 Defining a Model 46
3.2 Using Comments 52
3.3 Assignment Operator 53
3.4 The theta command 54
3.5 The fork … end Statement 58
3.6 The if … else … end Statement 63
3.7 Array in ThetaML 66
3.8 The loop … end Statement 69

3.8.1 Fixed Length Loop 69
3.8.2 Infinite Length Loop loop inf … end 71
3.8.3 Array Looping 73

P a g e | 6

3.8.4 Multiple Array Looping 74
3.9 Calling A Sub-model 76

Implicit fork … end 77
3.10 Matlab Native Access 82

3.10.1 Calling Matlab Functions 83
3.10.2 Calling a Complex Stepping Object 85

3.11 ThetaML Operators 102
The Future Operator “!” 102

3.12 Functions 105
3.12.1 The Function E() 105
3.12.2 The Function Beta() 108
3.12.3 Other Functions 109

3.13 System Parameters 110
3.13.1 The Parameter @dt 110
3.13.2 The Parameter @time 114

3.14 Chapter Example 115
4 The ThetaML Type System 125

4.1 The Boolean Type 126
4.2 The File Type 127
4.3 The Enum Type 128
4.4 Array types 129

5 ThetaML Interfaces 131
5.1 Interface Syntax 132
5.2 Interface Import and Export Statements 136
5.3 Language Constraints 137
5.4 Value Assertions 139

6 Workflows 141
6.1 Workflow Definitions 142
6.2 Workflow Statements 144
6.3 Assignments in Workflows 145
6.4 Loops in Workflows 146

P a g e | 7

6.5 Conditional Executions in Workflows 147
6.6 Sub Workflows 148
6.7 Functions 149
6.8 External Namespaces 151

7 ThetaML Language by Example 153
7.1 Tutorial From European to American 154

7.1.1 The Stochastic Process 154
7.1.2 European Option 155
7.1.3 Bermudean Option 157
7.1.4 American Option 159
7.1.5 Compound Option 161
7.1.6 Hedged American Option 164

7.2 Tutorial Hedging in ThetaML 166
7.2.1 Introduction 166
7.2.2 Delta Hedging 167
7.2.3 Variance Minimization by Hedging 176

7.2.3.1 Single Dimensional Stochastics 177
7.2.3.2 Multi-Dimensional Stochastics 184

7.2.4 Static and Dynamic Hedging 185
7.2.5 Transaction Costs 193

8 ThetaML Tips and Tricks 201
8.1 Nested if Improves Speed 202
8.2 Reducing Variance by Hedging Improves Convergence 203
8.3 Adding Control Variables Can Improve Accuracy 205
8.5 Avoiding Direct Assignment of Expected

Values Improves Accuracy 207
8.6 Keep Export Variables Unique 209

References 211
Index 213

P a g e | 8

Text Conventions Used in This Book:

	 Bold text denotes the first appearance of a ThetaML language keyword or
a ThetaSuite component name.

	 Italic text is used for numbered ThetaML code examples.

	 ThetaML code statements are written in a typewriter font Courier New.

	 Colored texts are ThetaML specific commands.

P a g e | 9

1 Introducing ThetaML

This chapter familiarizes you with ThetaML, the
Theta Modeling Language. It provides an introduc-
tion to ThetaML and its modeling features. It also
provides some guidelines on the structure of this
book.

This chapter includes the following sections:

	 The ThetaML Language

	 ThetaML Language Features

	 The Basis of ThetaML

	 The Structure of this Book

P a g e | 10

1.1 The ThetaML Language

ThetaML is designed to be as simple as possible while maintaining the ability to
model any financially relevant task, especially in the area of using stochastic mod-
els to price financial derivatives.

ThetaML describes financial models in two forms, either text-based as ThetaML
Script or graphically as Thetagram. Figure 1 illustrates the relationship among
ThetaML, ThetaML Script and Thetagram.

ThetaML

Text Graph
T
h
e
t
a
M
L

S
c
r
i
p
t

T
h
e
t
a
g
r
a
m

Figure 1. The Relationship among ThetaML, ThetaML Script and Thetagram: ThetaML is the
XML representation of ThetaML Script and Thetagram.

Both ThetaML Script and Thetagram can capture the full details of a financial
model and may be transformed into each other, allowing the user to choose a way
of modeling based on personal preferences and experiences.

P a g e | 11

ThetaML Script as a compact script language allows for rapid financial model devel-
opment in text-based form. Thetagram1 as a graphical representation requires almost
no programming skills and quickly yields visual presentations of financial models.

In the following, we will write ThetaML when referring to ThetaML Script or The-
tagram; the exact meaning will be clear from context.

1 In the Theta Suite, a Thetagram can be automatically created from a ThetaML model using these steps: The-
tagram is created by selecting a .thetas file, right click and choose the option ‘Initialize Thetagram’. This gives
you a list of ThetaML model names in rectangular-shaped boxes. It includes all the models in the selected
.thetas file. By double clicking one of the boxed model name, we get a display of the graphs generated for that
particular model.

P a g e | 12

1.2 ThetaML Language Features

As domain specific programming language, ThetaML has both functional and pro-
cedural features. The main language features include:

	Domain specific language for contract design

	 Programming in chronological order and computational order

	 Built-in conditional expectations

	 Implicit handling of scenario- and time- indices

	 Virtual multi-threading

	 Pre- and post-conditions on models to ensure model correctness

We elaborate on each feature in the following.

1.2.1	 Domain	Specific	Language	for	Contract	Design

ThetaML is the domain specific language which we use to describe and model the
structural features of stochastic models in financial engineering.

It is designed for pricing financial derivatives, selecting optimal investment strat-
egies and managing investment risks.

Defining and reading financial products in ThetaML is done with unprecedented
simplicity and is significantly faster than using conventional term sheets.

P a g e | 13

Complex term sheets are currently the only way to express and communicate the
contents of a financial product. The process of turning a term sheet into a com-
putable pricing algorithm is long and error prone. So far, there exists no adequate
standard for specifying the structural model of an arbitrary financial derivative.
To address this issue, we introduce the definition language ThetaML that allows
the specification of structural models in a way that is both precise and intuitive.
Furthermore, details of financial contracts can be represented in the natural time
order of the events.

ThetaML can be automatically translated into numerical algorithms. Hence, it
is not only a description language, but also solves a specific numerical prob-
lem. Being completely independent of the numerical schemes, Monte Carlo, PDE
solvers or trees could encompassingly be used to compute the desired result. A
financial engineer using ThetaML to design or analyze a certain financial prod-
uct can thus focus on the problem domain without having to worry about the
numerical details.

P a g e | 14

1.2.2 Programming in chronological order and computational order

Programming in chronological event order is what distinguishes ThetaML most
from other programming languages.

Figure 2 illustrates the difference between programming in chronological order
and computational order, using the pricing process for an American-type option
as an example. The ThetaML pseudo code for pricing the American-type option
simply follows the time order in which the events of a pricing model are (expect-
ed) to occur. In contrast, code written in computational order requires significant
reordering.

The unique feature of ThetaML as a programming language is the ability to access
the future values of stochastic variables. This is achieved with the future operator
“!”. The future operator “!” and the theta2 command allow ThetaML programs to
be written in chronological order but be computationally evaluated backward in
time.

2 For definitions of the future operator “!” and the theta command, please reference section 2.1.

P a g e | 15

Computational
Order

Chronological
Order

ThetaML
Pseudo Code

Decide
Expected
Future Payments

Propagate
Time Process

If E(V!) > iV
 V = iV
end

Time passes,
if not exercise

Compute
Final Payment theta T

Receive
Final Payment

Compute Current
Expected Value V = iV*

*intrinsic value

Figure 2. Illustration of programming in chronological order and computational order,
with a ThetaML pseudo code for an American-Type Option.
In the graph, each text box has an event happening. Text backgrounds indicate time order.
The lightest background means the events are evaluated at current time; intermediately
shaded background indicates intermediate time propagation process, and deep colored
events happen at final time.

In comparison, conventional programming languages can only access a value that is
previously assigned to a variable and the program codes are evaluated sequentially.

ThetaML as a programming language includes the ability to program conventionally
in computational order; on top of that, it adds the unique style to program in chrono-
logical order. This is facilitated with the future operator “!” and the theta command.

P a g e | 16

The ability to program in chronological event order is unprecedented. The fu-
ture operator “!” is handy, especially in cases of pricing more complex financial
derivatives with early exercise decisions, such as American options, chooser op-
tions, convertible bonds and others, when the decision-making process involves
expected future values unknown at the decision-making time.

1.2.3 Built-in conditional expectations

ThetaML can evaluate the conditional properties of stochastic variables or pro-
cesses as a statistical approximation using a single function - E().

In ThetaML, time is virtual and is called model time. Model time is defined in
terms of chronological event-triggered order, that is, model time follows the time
sequence in which chronological events occur in a pricing model. The function
E()is computed conditional on all function parameters values that are known at
the corresponding model time.

The arguments of the function E() implicitly access their estimated future values
at future time points. The access to future values at current time is realized with
the future operator “!”. Advancing model time between current and future time is
done with the theta command.

The function E() is applicable to all process variables in ThetaML. In order to
compute the expectation function E(), the compiler automatically identifies the
independent variables, conditional on the information known at the current mod-
el time. More precisely, the compiler determines the smallest sigma field of the
underlying state variables at current model time, by filtering out the set of state
variables that are measurable at current model time. Thus, the compiler hides the
hassle associated with the numerical evaluation of E()and conditions it on the
information known at the corresponding model time. The function E()can

P a g e | 17

be applied, for example, to the conditional evaluation process in the Least
Squares Monte Carlo (LSMC) method for early exercisable options. It can
also be used in the risk-neutral pricing of European-type options, in which
case the function E() summarizes the averaging process as what is done with
Monte Carlo pricing derivatives in other programming languages.

1.2.4 Implicit handling of both scenario- and time- indices

Variables defined in ThetaML represent a stochastic process. They do not re-
quire explicit scenario- or time- indices. The scenario- and time- indices are
implicitly handled by ThetaML. By writing ThetaML in chronological order, the
semantic information implicit in a process variable is revealed by the model
time explicitly defined in a pricing application. Consequently, the pricing task
is independent of the numerical procedures used to simulate the stochastic
processes.

In Monte Carlo evaluations, we often need to consider both scenario and time in-
dices. This is where index confusions and errors might easily occur. By simultane-
ously taking care of both scenario and time indices, ThetaML saves users loads of
efforts in cases like writing loops and evaluating conditional multi-indexed state-
ments, besides having the desirable effect of producing compact programming
codes.

1.2.5 Virtual multi-threading

ThetaML allows simulations with multiple threads (i.e. multiple simulation tasks)
to be executed in parallel at model time. This is enabled with the fork … end state-
ment and the theta command.

P a g e | 18

As an investment portfolio typically consists of hundreds of financial products,
each financial product may have some event-related peculiarities, the separation
and synchronization of simulation tasks is both convenient and necessary.

In ThetaML, the fork … end statement is used to couple multiple simulation tasks
that occur parallel in model time; the theta command that defines and passes the
model time is used to synchronize the simulation tasks virtually paralleled by the
fork … end statement.

1.2.6 Pre- and post-conditions to ensure model quality

ThetaML has interfaces to ensure that certain parameter or process values are
within the range of the constraints. The constraints for initial parameter values
are imposed before a model is run. If a ThetaML model does not comply with the
constraints imposed by the interface, the model can not be executed and returns
the violated constraint instead. The constraints on the exported process variables
are imposed after a model is run. This post conditions must be satisfied by the
exported variables at all model time steps.

Interfaces in ThetaML make easy the task of model reviews, such that the mod-
eler does not have to check each sub_model for violations of value constraints.

P a g e | 19

1.3 The Basis of ThetaML

The essence of ThetaML is the virtual timing model it operates in.

Unlike conventional programming languages where the computational flow is de-
termined by the order of code statements, ThetaML operates on a chronological
model time axis: ThetaML allows the programmer to insert time delays between
code statements at different model times using the theta command. The values
of variables at a given line of code are evaluated at the model time associated with
that line of code.

Different blocks of codes executed simultaneously have a common model time
axis. The model time grid is a collection of all the event times occurred in multiple
simulation tasks; different simulation tasks may have different events occurring
at different time. Within multiple simulation tasks, variables can be cross-ac-
cessed and all variable values at that line of code are evaluated at the model time
executed at that line of code.

P a g e | 20

The ThetaML code and Figure 3 below give an illustration for how the virtual tim-
ing model operates in ThetaML:

 % the fork … end block that performs simulation task 1
1: fork
2: theta 1.5 % 1.5 time units pass from time 0
3: x = 1 % at time 1.5, x is assigned the value 1
4: theta 4.5 % another 4.5 time units pass
5: x = 4 % at time 6, x is assigned the value 4
6: end

7: % the fork … end block that performs simulation task 2
8: fork
9: y = 5 % at time 0, y is assigned the value 5
10: theta 3 % 3 time units pass from time 0
11: y = 10 % at time 3, y is assigned the value 10
12: end

13: % code statements that perform simulation task 3
14: theta 1.5 % 1.5 time units pass from time 0
15: z = x! % at time 1.5, z accesses the future value of x

x = 1 x = 4
Simulation task 1

Simulation task 3

Simulation task 2
y = 5 y = 10

z = x!
fork

0 1.5 3 6 model time

Figure 3. The virtual timing model in ThetaML.
This figure is a graphical illustration of the above ThetaML code statements.

P a g e | 21

In Figure 3, the time axis records all the model times occurred in the three simula-
tion tasks. For example, Simulation task 1 has an event happening at time 1.5,
i.e. x is assigned a value of 1 (line 3 in the ThetaML code). Simulation task 2
has an event happening at time 3, i.e. y = 10 (line 11 in the ThetaML code).
Simulation task 3 cross assesses the value of x in Simulation task 1 via z =
x! (line 15 in the ThetaML code), i.e. the variable z is assigned the future value of
x (x = 4 at time 6) using the future operator “!”.

In ThetaML, the simulation tasks are virtually paralleled using the fork … end
statement and synchronized by the theta command. As a result, the model time
axis combines all the event time occurred in the three simulation tasks and it is
shared by the three simulation tasks. Time passing along the model time axis is
enabled with the ThetaML command theta.

This virtual timing model of ThetaML is the key to its ease of use in describing
financial derivatives. Since financial derivative contracts typically have sequential
time-triggered events, such as scheduled payments, a maturity time, etc., Thet-
aML can simulate this type of multiple-event sequential-time processes. The abil-
ity to execute multiple code elements in parallel allows the users to model cross-
dependent financial products or variables. An option on a bond can be simulated
in a way such that both processes - the option and its underlying bond - evolve as
what they would evolve in real-time financial markets.

P a g e | 22

1.4 The Structure of This Book

The plan of this book is as follows. After introducing ThetaML in Chapter 1, we
provide in Chapter 2 a quick tour of ThetaML. Chapter 3 documents the detailed
ThetaML language syntax and provides many code examples. The Chapter Ex-
ample gives a first application of ThetaML in financial modeling. Following that,
in Chapter 4 we detail on the ThetaML type system. Chapter 5 documents Thet-
aML interfaces. Chapter 6 writes about ThetaML workflows. Chapter 7 provides
in ThetaML two tutorial examples in the area of pricing and hedging financial
derivatives. Finally, in Chapter 8 we give some tips and tricks for more efficient
use of ThetaML in financial applications.

P a g e | 23

2 ThetaML Quick Tour

This Chapter gives an overview of

	 ThetaML Language commands

	 Running a ThetaML example in Theta Suite

	 Creating the first ThetaML model and eval-
uating it with Theta Suite

P a g e | 24

2.1 ThetaML Language Commands and Functions

The following is a selected list of ThetaML language concepts, commands and
functions.

	model time
In a ThetaML model, time is virtual and is called model time. Model
time is defined in terms of chronological event-triggered order. Mod-
el time proceeds forward in time according to the time sequence of
events that occur in a pricing model. Model time is passed by the theta
command.

	 the theta / Theta command
The crucial theta command defines and passes model time. Model time
is used to synchronize multiple simulation tasks that occur parallel in
model time. Every theta command is followed by a statement defining a
time interval.

	 the fork … end statement
With the fork … end statement, code blocks are virtually executed in par-
allel in model time.

	 the future operator “!”
The unique future operator “!” allows access to the future values of a
variable.

	 the infinite loop loop inf … end
The flexible loop inf allows the loop to run until all other fixed-length
loops sharing the same model time axis are terminated by their model de-
termined length.

P a g e | 25

	 the fixed loop loop … end
The loop … end statement allows repeated executions for a fixed num-
ber of times. The parameter after the loop statement defines the type of
loops. It can be an integer for a finite number of iterations, or an array, in
which case the loop will iterate over the elements of the array.

	 the function E()
The E() function computes the conditional expected value of a variable or
an expression.

	 the function Beta()
The Beta() function takes two arguments and computes the beta factor(s)
between these two arguments, conditional on the current information.

	 the parameter @dt
The time interval parameter @dt has different values depending on its
context. If @dt follows the theta command, it evaluates to the time that
passes to the next event-triggered time. In case @dt is found elsewhere,
it evaluates to the time step that has passed since the thread’s previous
theta command. The @dt parameter is most often found within the infi-
nite loop loop inf … end.

P a g e | 26

	 the parameter @time
The @time parameter variable returns the current model time. It is the
sum of all previous theta @dt time steps. The @time parameter is most
often found within the infinite loop loop inf … end.

	 the parameter @scenarioIndex
The parameter @scenarioIndex extracts the index of current Monte-Car-
lo scenario.

	 the parameter @scenarioSize
The parameter @scenarioSize extracts the size of Monte-Carlo scenarios.

P a g e | 27

2.2 Running ThetaML Example Models with Theta Suite

This section gives an introduction to running example models in Theta Suite.

1) We can start run “Theta Suite” from the “Start” menu or by double clicking
“ThetaSuite.exe”. After a few seconds’ loading, we have in front of us the Wel-
come page of Theta Suite.

P a g e | 28

2) In the “Welcome” view of Theta Suite, there are sections that guide you to find
information about how to start using Theta Suite and how to write ThetaML
models.

3) Every installed ThetaSuite.exe has a “Sample Project” folder that provides the
user a list of ThetaML model examples. We can find the “Project Explorer”
view on the upper left corner of the Theta Suite workspace. In case the “Proj-
ect Explorer” view is not already open, we can open the view from the menu
“Window”, then choose “Show View”, and select “Project Explorer”.

4) In the “Project Explorer” view, we can open the folder “Sample Project”, then
choose the subfolder “Products”. Under the subfolder “Products”, choose the
sub_subfolder “Derivatives”, there is a list of folders named after various op-
tion types, such as “European”, “American”, “Asian”, “Chooser”, and so on. Open
the folder “American”, by clicking on the boxed “+” sign. This expands into a
list of files, including the ThetaML configuration file ended with type .thetaml,
the ThetaML model file ended with type .thetas, or Thetagram file ended with
type .thetagram.

5) Select and double click the runtime configuration “american.thetaml”. This
brings into view the ThetaML Configurator page:

P a g e | 29

6) To start model evaluation, we give some values for the input parameters in
the field “Runtime parameters”. We then specify the number of simulation
paths and provide a random seed for the “Monte-Carlo method parameters”
under the field “Evaluation method parameters”. In the field “Code generator
parameters”, we can browse the existing model files and select the one we
wish to evaluate – american.thetas - for “Model file”. This automatically brings
up a drop box list of model names for “Model to run”, choose the model named
“AmericanPut”. The default name for the “Output file” is “out” with type .m, i.e.
the generated output file is a Matlab m-file.

P a g e | 30

7) To run the model “AmericanPut”, click the button “Generate & Run” in the “Ac-
tions” bar. This leads to a status window titled “Running generated code…”,
the progress bar in the status window indicates the progress of the running
process. The compiler first optimizes the code execution order, then com-
piles and runs the codes. After the code optimization, compiling and run-
ning process, the “Theta Suite Result Explorer” comes up and shows a list of
named variables exported by the “AmericanPut” model in the file “american.
thetas”.

8) The “Theta Suite Result Explorer” is a versatile tool with many options for
analyzing simulation results. Simply select a variable, the “Status” field shows
a summary of the simulated results for the selected variable. This includes
the number of simulation paths, the dimension of the variable, and the mean
value of the variable plus and minus two standard errors.

Select the variable “S”, we have in the field “Step : time” a list of ‘index - model
time’ pairs: the left-hand side of “:” marks the index for “S” at a certain model
time, the right-hand side of “:” are the model times of “S”. If we select the index

P a g e | 31

step “10” at model time “0.018”, the “Mean” value under the “Status” field au-
tomatically changes to the mean value of “S” plus and minus two standard er-
rors at this model time, this average is taken across all the Monte-Carlo paths.
We can also press the “Plot” button and bring up the “Histogram” plot of the
stock “S” distributed across all Monte-Carlo paths at model time “0.018”.

If we are interested to know the values of “S” at a selected number of time steps,
such as the values of “S” at every ten model time steps, we can filter the values
of “S” in the field “Time-step filter” by using the range specifier: [from : step_size
: to], in this case it is 1 : 10 : 503, then press enter. As expected, the “Time-step
filter” selects every 10-th of the “index - model time” pairs. Simply press the
“Plot” button, we have the following screen shot of the “Sample paths of Simu-
lated stock prices (S)”, for values of “S” spaced at every 10-th model time steps:

To see the quantile distribution of Stock “S”, select “S” in the “Theta Suite Re-
sult Explorer”, right click and choose “Plot” then “Quantiles”, this brings up
the quantile plot of stock “S”:

P a g e | 32

If the Stock “S” is two dimensional, we can use the “Dimension filter” field to
single out stock values for either the first or the second dimension, by using
the range specifier 1:1 or 2:2 respectively.

9) The “Theta Suite Result Explorer” provides two other options for further ex-
aminations of the simulation results. We can either “Open in Matlab” or “Open
in Excel” the output data, by pressing the respective buttons.

The “Open in Matlab” button brings up the Matlab console window. Select the
“Workspace” tab, we have the “conf” struct in view. Double click on the “conf”
name and bring up the “Array Editor” for “conf”. The “Array Editor – conf” has
the same fields as the ThetaML Configurator. The “conf” fields are stored as
Matlab struct type. Double clicking any of the field values shows the subfields
of yet another struct type, simply double clicking again any of the field values,
we eventually arrive at the parameter values initially inputted by us in the
ThetaML Configurator.

P a g e | 33

The “Open in Excel” button leads us to an export dialogue box, which asks for
the export type for the output data. Select for example “Excel plain”, we have
the input fields respectively for “File name” and “Scenario range”. We can ei-
ther give a new name for the output file or browse and select an existing file to
replace the old data. The default “Scenario range” for the simulation outputs
is one scenario, we can selectively specify the “Scenario range” that we wish
to export by using the range operator [from : step_size : to], such as [1 : 2 :
10], that is, every second scenario of the first 10 scenarios. Pressing either the
button “Export to file” or the button “Open in Excel” exports the output data
to the desired destination. The “Export to file” option shows the exported file
name in the current directory, i.e. in the folder “American”; the “Open in Excel”
option directly opens the Excel workbook with one worksheet named “Mean”
and a number of other worksheets named “Scenario_#”, where the # sign
represents Scenario number. For example, the worksheet name “Scenario_1”
refers to the first scenario in the simulation output, the worksheet name “Sce-
nario_3” refers to the third scenario in the simulation output, and so on. The
worksheet “Mean” gives the mean values for the exported variables at each
model time, the mean is taken over all the Monte-Carlo paths. The worksheet
“Scenario_1”, for example, has the simulated values for the exported variables
at each model time in the first scenario.

P a g e | 34

10) The “Theta Suite Result Explorer” shows in the “Pick variable with simula-
tion” field a list of the saved configuration variables, selecting any variable
from the list brings up the saved simulation output for variables exported by
that configuration variable. The option to switch easily from one saved output
to another helps to compare simulation results without having to generate
and run the codes each time.

11) We can alternatively export and save output data using the menu “File”, and
plot the graphs using the options provided by the menu “Plotting”.

P a g e | 35

2.3 Creating and Running ThetaML Models

This section shows you how to create and run your own ThetaML model in Theta Suite.

2.3.1 Creating a ThetaML Model

To start with, we create a project to hold the new file. Right click a space in the
“Project Explorer” view, select “New” then “Project…”:

This brings out the “New Project” wizard window. Select “General” then “Project”,
and press the “Next” button. In the next “New Project” window, give a name for
the new project, such as “ThetaSuite Demo” in the following picture:

P a g e | 36

Then press the “Finish” button, the created new project shows up in the “Project
Explorer” view along with other existing projects.

We can now create a model file within the new project. Select and right click the
“ThetaSuite Demo” project, select “New” then “File”.

In the “New File” dialog window, select the parent folder “ThetaSuite Demo”, type
in the file name “demo.thetas”:

P a g e | 37

After pressing the “Finish” button, we have an empty editor.

P a g e | 38

We can now start writing ThetaML models in the editor. The following is an exam-
ple ThetaML model for simulating stock prices “S” that are driven by a Geometric
Brownian motion process:

% This model simulates a stock price process ‘S’.
% The stock prices ‘S’ follow a Geometric Brownian motion
% process. The model name is ‘GBM’, it imports a
% parameter named ‘S0’ as the initial stock price,
% and exports in the variable ’S’ the simulated
% stock price process
model GBM
 import S0 “Initial stock price”
 export S “Simulated stock price process”

 % setting the stock price parameters
 % ’mu’ is the drift of the stock prices ‘S’
 mu = 0.05

 % ’sigma’ is the volatility of the stock prices ‘S’
 sigma = 0.4

 % initialize the stock prices ‘S’ at ‘S0’
 S = S0

 % loop 100 times
 loop 100
 % time passing of ‘1/100’ time unit
 theta 1/100

 % update the stock prices ‘S’ for the time step @dt
 S = S * exp((mu - 0.5 * sigma^2) * @dt
 + sqrt(@dt) * sigma * randn())
 end
end

Copy and paste the above ThetaML model GBM into the editor, we have the follow-
ing screen shot:

P a g e | 39

2.3.2 Running and Evaluating the ThetaML model

To evaluate the ThetaML model GBM, save the model file “demo.thetas”. Then create
a configuration file called “demo.thetaml”. The configuration file is automatically cre-
ated by clicking the “ThetaML” button on the menu bar in the above screen shot.
The configuration file can also be created by selecting the “demo.thetas” model file in
the “Project Explorer” view, right clicking and choosing the option “Initialize ThetaML
Configuration”. Either way, we have the following “ThetaML Configurator” page:

P a g e | 40

In the configuration editor of “demo.thetaml”, we give a value for the “Initial stock
price (S0)” in the field “Runtime parameters”, specify the “Number of Monte-Carlo
paths” and set the “Seed for random number generation” in the field “Monte-Carlo
method parameters”. Then select or type in “demo.thetas” for the “Model file”,
choose the ThetaML model “GBM” for the “Model to run”.

To start the model evaluation, click the button “Generate & Run” in the “Actions”
bar.

After the code compiling and running process, the “Theta Suite Result Explorer”
shows up. The screen shot looks like this:

P a g e | 41

We can examine the simulation results for stock prices “S”. Select the variable “S”,
right click and choose “Plot”, then “Sample paths”, this produces a sample path
plot of stock prices “S” as shown in the following figure:

This figure can alternatively be produced by selecting the variable “S” then press-
ing the button “Plot”.

P a g e | 42

At this point, we hope that you know already the basics of Theta Suite and how to
create and run ThetaML models. There are many other options available, simply
play around and get familiar with the software features, it will come handy when
later using ThetaML in financial modeling.

P a g e | 43

Overview of the ThetaML Language

The Theta Modeling Language (ThetaML) is a Domain Specific Language
(DSL). ThetaML is an extension to simple procedural programming languages.
It is a notation for describing the structure of financial products. The notation
is generic, simple and yet is backed by a solid mathematical and computa-
tional interpretation. ThetaML is unprecedented in its ability to program in
chronological order, above and beyond the conventional computational pro-
gramming order.

ThetaML focuses on financial product structural features and abstracts
these structural features from numerical details. ThetaML has the following
features:

	 Expressiveness: all features of a financial product are presented in a
precise and compact manner.

	Modularity: the structure of financial products is separated from model
stochastics and numerical details.

	 Transparency: ThetaML is easily comprehensible and allows for concise
communication and documentation of financial product details.

	 Integrability: ThetaML can be easily integrated with the existing code,
which enables the users to build upon previous work.

	 Simplicity: little learning effort is required for a computer literate.

P a g e | 44

Why Expressiveness, Modularity, Transparency, Integrability and Simplicity
are the most important properties for a Domain Specific Language in finance?
The question may be best answered by the following texts:

Expressiveness is important since a description language should ideally be
able to encompass all product features of different financial contracts in an
investment portfolio. It is also important that all necessary delivery options
and day count conventions included in the transactions can be precisely and
concisely represented.

Modularity allows separation of responsibilities, such that product structur-
ers can focus on product features and quants can focus on the pricing models.
Furthermore, modular code greatly improves maintainability.

Transparency significantly improves program maintainability. ThetaML also
describes financial products in an intuitive and compact way and makes it
easier to communicate how financial products work.

Integrability with existing functionalities can be guaranteed by the ThetaML
programming paradigm which is very close to standard procedural program-
ming that facilitates variables and procedure calls. Reuse of stochastic models
and numerical procedures is important to a smooth transition from the previ-
ous modeling process to the new one.

The ThetaML language is simple and easy to learn. Basic programming skills
is suffice to learn the language.

P a g e | 45

3 ThetaML Syntax Reference

This chapter documents the Syntax allowed in Thet-
aML models. The following contents are included:

	Defining a model

	 Using comments

	 Assignments

	Model time passing with the theta command

	 Using fork … end to define parallel processes in time

	 if … else … end statement for conditional evaluations

	 Arrays in ThetaML

P a g e | 46

3.1	 Defining	a	Model

A model in ThetaML is equivalent to a function or a subroutine in other proce-
dural programming languages.

A model in ThetaML has the following structure:

model <Model Name>
 <Import/Export Statements>

 <Processing Statements>
end

A model starts with the keyword model and is terminated with the keyword end.
The model name follows the keyword model.

Model arguments can be parameters or processes and they are imported into the
model structure using the keyword import. Imported parameters or processes
are given a name and an optional description string in double quotes, e.g. “im-
port variables description string”. The description for the imported vari-
ables shows up in the ThetaML	Configurator3 used to run the model. Multiple
parameters or processes can be imported using a single import keyword, they are
separated by commas.

The values or processes computed by the model are returned in named variables
via the keyword export. They can be used for further analyses or be imported
by other models that call this model as a subroutine. Exported variables must be
assigned a value within the body of the model. The exported variables can have
an optional description string, e.g. “export variables description string”.

3 For descriptions on the ThetaML Configurator, please refer to section 2.2 step 5).

P a g e | 47

The description for the exported variables shows up in the Theta Suite Result
Explorer 4. Multiple parameters or processes can be exported using a single ex-
port keyword, they are separated by commas.

ThetaML uses the same naming convention for parameters as other program-
ming languages. Variable names can contain letters, digits and single underscore
characters; spaces, punctuation marks and symbols are not allowed. Also, vari-
able names cannot start with digits. In ThetaML, variable names are case sensi-
tive. For example, put differs from Put. Certain ThetaML reserved keywords and
type names cannot be used as variable names. The length of variable names is not
limited, but it is good programming style to keep variable names short and infor-
mative. Examples of valid variable names in ThetaML are:

AmericanOption, discountBond, _p_HestonModel, HW2factor

The following terms are reserved keywords in ThetaML:

assert, call, else, end, export, fork, from, if, implements, import,

inf, interface, length, loop, model, theta, to, type, workflow

The following terms are reserved type names in ThetaML:

boolean, date, enum, file, float, object, outputfile, string

The first letter of each keyword and type name can be capitalized, i.e. If and if are
the same, Boolean and boolean are the same, and so on.

4 For descriptions on the Theta Suite Result Explorer, please refer to section 2.2 step 7).

P a g e | 48

The following are reserved function names in ThetaML:

Beta(), E(), rand(), randn()

The following are reserved operator symbols in ThetaML:

! (the exclamation mark), @ (the at sign)

The following are reserved parameter functions in ThetaML:

@time, @dt, @scenarioIndex, @scenarioSize

In ThetaML, the import and export statements can occur once on a single line
or multiple times (in which case, they are separated with a semi-colon “;”). For
readability and good programming style, we recommend using one import or ex-
port statement per line. Below is an example for using the import and export
statements:

 import x1 “stochastic process x1”
 import x2 “stochastic process x2”
 import a, b, c “processes a, b, c”

 export y1 “stochastic process y1”
 export y2 “stochastic process y2”

 export e, f, g “processes e, f, g”

In ThetaML, variables are imported as processes. The arguments are imported
as if there were passed by reference because the values of a variable can change
when model time changes. Stated differently, a process may take different val-
ues at different model times in the modeling process. After the import and ex-
port statements, the body of a model processes the code statements that define
a model.

P a g e | 49

Note: In ThetaML, model arguments are imported as processes, they are
passed by reference; their values can change when model time passes.

At the time of import, the type of an imported variable is unknown. It is deter-
mined later on in any of the following ways:

	 In the modeling process, the specific use of the variable implicitly deter-
mines its type.

	When imported from an external model, the variable type is determined
externally.

	Numeric data types in ThetaML are double-precision floating-point
numbers.

	 If the other ways are inadequate, the type keyword can explicitly specify
its type (after all the import and export statements).

Chapter 4 “The ThetaML type system” gives details on use of variable types in
ThetaML.

Note: In ThetaML, numerical data types are double-precision floating-point
numbers.

P a g e | 50

Following are some examples defining models and importing/exporting variables
into the models. All code statements in ThetaML can be optionally terminated
with the “;” symbol (a semi-colon).

Example 1:

An empty model is formulated like this:

1: model EmptyModel
2:
3: end

Example 2:

The following model imports a variable x (line 2) and exports its squared value
(line 5) in the variable y:

1: model xSquared
2: import x
3: export y “x squared”
4:
5: y = x^2
6:

7: end

P a g e | 51

Example 3:

The following model imports a variable x (line 2) and exports double its value
(line 5 - line 7) in the variable y:

1: model Double_x
2: import x
3: export y

4: % the value of a! waits to be determined later
5: y = a! * x

6: % a is assigned 2, as such a! = 2 at 5
7: a = 2
8:
9: end

In the model Double_x, the variable a is referenced by the future operator “!” in
line 5. The future operator “!” accesses a = 2 at line 7, and returns the result 2
* x in the variable y (line 5).

P a g e | 52

3.2 Using Comments

Comments in ThetaML are initiated with the symbol %, everything after the sym-
bol % until the end of the line is ignored by the compiler, including comments
within comments.

The following is an example of using comments in ThetaML:

model Comments
 %this
 % is
 % % a % comment

end

P a g e | 53

3.3 Assignment Operator

Assignments are done using the = operator, e.g.

<variable> = <formula>

Examples of using assignments in ThetaML:

 x = 42
 x = 7 * 9

 y = 2 + x

Note that in the last statement, the variables x and y can be, for example, financial
processes with scenario and time as indexes. In ThetaML, processes implicitly
incorporate both scenario and time indices. Thus, scalar variables and matrices
have the same notation. This simplified notation will come in very handy later
when used in solving financial problems.

Note: In ThetaML, a variable that denotes a process implicitly incorporates
both scenario and time indexes.

P a g e | 54

3.4 The theta command

The theta command is a crucial statement in ThetaML. It defines and passes the
model time. Every theta statement is followed by a statement defining a time
interval.

The theta command:

 theta <time step>
or
 Theta <time step>

Model time is used to synchronize multiple threads that occur parallel in virtual
time. When external numerical routines5 are called to compute certain model pa-
rameters, model time also allows synchronizations with the external numerical
routines.

Note: In ThetaML, model time proceeds forward in time according to the tim-
ing order of events happening in a pricing model. Model time is passed by the
theta command.

5 The use of external numerical routines in ThetaML is further elaborated in section 3.10 Matlab Native Access

P a g e | 55

The ThetaML example below illustrates how model time works.

Example 4:

1: model A
2: import S “S is a process computed in model B”
3: export X
4: export Y
5:
6: theta 0.5 % time passes by 0.5 unit
7: X = S % X is assigned the value of S at time 0.5
8:
9: theta 1.5 % time passes by another 1.5 unit
10: Y = S % Y is assigned the value of S at time 2
11:
12:end

1: model B
2: export S “Process S”
3:
4: S = 1 % at time 0, S = 1
5: theta 1 % time passes by 1 unit
6: S = 2 % at time 1, S = 2
7:

8: end

When a model that calls or references models A and B is run, the variable S is
modified and exported by model B, and subsequently used in model A.

In model B, the variable S is assigned a value of 1 at time 0 (line 4), and a value of
2 (line 6) at time 1 (1 time unit is passed by the theta command). In between
time 0 and 1, the variable S takes the value of 1 assigned at time 0. After time 1,
the variable S takes the value of 2 assigned at time 1.

P a g e | 56

In the model that calls or references models A and B, model A imports the process
S exported from model B. Since S is imported as a process, it automatically syn-
chronizes in model time with the processes X and Y defined in model A.

In model A, as time passes by 0.5 units with the command theta 0.5 (line 6),
the variables X is assigned the value of S at time 0.5, i.e. X = 1 (line 7). As time
passes by a further 1.5 units, theta 1.5 (line 9), the variables Y is assigned
the value of S at time 2, i.e. Y = 2 (line 10).

The example below is simple to understand. Figure 4 illustrates the example’s
model time passing using the theta command.

Example 5:

 y = 0 % y = 0 at time 0
 theta 1 % 1 time unit passes

 y = 3 % an event happens at time 1: y is assigned 3

 theta 0.5 % another 0.5 time units pass
 y = 1 % an event happens at time 1.5: y is assigned 1

 theta 1.5 % another 1.5 time units pass
 y = 4 % an event happens at time 3: y is assigned 4

 theta 1/4 % another 1/4 time units pass
 y = 2 % an event happens at time 3 and 1/4:
 % y is assigned 2

y = 0 y = 3 y = 1 y = 4 model timey = 2

theta 1 theta 0.5 theta 1.5 theta 1/4

Figure 4. Model time passing with the theta command from Example 5.
The model time grid is divided at the time when an event happens. The theta command passes
model time from one point in time to the next one.

P a g e | 57

In Figure 4, the variable y is set to 0 at time 0. With time passing by 1 time unit, y
= 3 at time 1. After another 0.5 time units, y = 1 at time 1.5. At time 3¼ (1 + 0.5
+ 1.5 + 1/4 = 3¼), y = 2.

P a g e | 58

3.5 The fork … end Statement

With the fork … end statement, code blocks are executed in parallel in model
time. The theta command enables multiple threads bundled by the fork … end
statement to be executed in parallel.

The fork … end statement:

 fork
 commands
 end

or

 fork
 commands
 end
 commands

A fork block begins with fork and is terminated by the end keyword. Statements
between these two tokens share the same time axis with other statements in the
model, i.e. they run in parallel in model time. Time passing along the time axis is
advanced by the theta command. A fork … end statement coupled with another
fork … end statement run in parallel in model time.

Note: In ThetaML, the fork … end statement enables multiple simulation
threads to run (virtually) parallel in model time.

P a g e | 59

The following example shows two fork … end blocks that run parallel in model
time:

Example 6:

 % the first fork … end block
1: fork
2: a = 0 % at time 0, a = 0
3: theta 2 % 2 time units pass
4: a = 5 % at time 2, a = 5
5: end

 % the second fork … end block, runs virtually parallel
 % with the first fork … end block
1: fork
2: theta 1 % 1 time unit passes from time 0
3: x = a % at time 1, x = 0
4: theta 2 % another 2 time units pass
5: x = a % at time 3, x = 5

6: end

The first block initially sets the variable a to zero (line 2), then sets it to 5 (line 4)
after 2 time units have passed with the command theta 2. Between time 0 and
2, the variable a takes the value of 0 assigned at time 0. After time 2, the variable
a takes the value 5 assigned at time 2.

The second block shares the same model time axis with the first fork … end
block. It proceeds to time 1 with the command theta 1 (line 2), and copies the
value of a at time 1 (a = 0) to the variable x (line 3). After a further 2 time units
(line 4), at time 3 the value of a is copied to x again, i.e. x = 5 (line 5).

In case multiple write operations occur in the same timing model, the value as-
signed later overwrites the previous value(s). The following example illustrates
this.

P a g e | 60

Example 7:

 % the fork … end block
1: fork
2: a = 0 % at time 0, a = 0
3: theta 3 % 3 time units pass
4: a = 5 % at time 3, a = 5
5: end
6:
7: % code statements after the fork … end block
8: theta 1 % 1 time unit passes from time 0
9: x = a % at time 1, x = 0
10: theta 2 % 2 time units pass

11: x = a % at time 3: x = 5

a = 0 a = 5

x = a
fork

0 1 2 3 time

x = a

Figure 5. Multiple write operations in the same timing model, from Example 7.
The value assigned to x at time 3 overwrites the value assigned to x at time 1.

In Example 7, the fork … end code statements (line 1 - line 5) run in parallel
with the other code statements in the same model. Within the fork … end code
statements, the variable a is assigned a value of 0 at time 0 (line 2). At time 3
(line 4), it is given a value of 5. Between time 0 and 3, the variable a takes the
value 0 assigned at time 0.

P a g e | 61

The code statements outside the fork … end block share the same model time
axis with the variable a: as time passes by 1 unit (theta 1 at Line 8), x is as-
signed the value of a at time 1, i.e. x = 0 (line 9); after another 2 time units
(theta 2 at line 10), x is again given the value of a at time 3, i.e. x = 5 (line 11).
The assignment to x at time 3 overwrites the assignment to x at time 1, i.e. after
time 3, x = 5. However, between time 1 and 3, x is still equal to 0.

Figure 5 illustrates the code statements in Example 7 in graphical form.

Note: If two ThetaML expressions are defined at the same model time, the
coding order of the expressions determines their order in model time.

P a g e | 62

Another fork … end example:

Example 8:

1: % the first thread
2: fork
3: theta 1 % 1 time unit passes from time 0
4: a = 1 % at time 1, a = 1
5: end

6: % a second thread, executed after the first thread
7: fork
8: theta 1 % 1 time unit passes from time 0
9: % at time 1, a = 2, this overwrites
 % a = 1 in the first thread
10: a = a + 1
11: end
12:
13: % a third thread, executed after the second thread
14: theta 1 % 1 time unit passes from time 0
15: x = a % at time 1, x is assigned the

 % value of a = 2

In the above example, the three threads run in parallel in model time. The first
two threads have different values for the variable a at time 1. The second thread
(line 7 - line 11) builds upon the latest value of a which is a = 1 (line 4) in the
first thread, then increments it by 1 to have the result a = 2. A third thread (line
14 - line 15) after the two fork … end blocks could only see the latest value as-
signed by the second thread (a = a + 1 at line 10), thus it returns the value of
2 to x (line 15).

P a g e | 63

3.6 The if … else … end Statement

As with other programming languages, ThetaML allows conditional evaluations
using the if … else … end statement.

The if … else … end statement:

 if <condition>
 ...
 else
 ...

 end

If the if condition evaluates to be true, the statements after if and before else
are executed. Otherwise, the else branch is executed.

In ThetaML, the nested if … else … end statement is as follows:

 if <condition>
 ...
 else
 if <condition>

 ...
 else

 ...
 end
 end

P a g e | 64

ThetaML uses the following logical and relational operators:

| %or
& %and
> %greater than
< %less than

== %is equivalent to

The relational operators (e.g. >, <, ==) precede the logical operators (e.g. &, |), the
& operator precedes the | operator. Relational operators do only pairwise com-
parisons, e.g. a > b or x < y, but statement like a > b > c is not allowed. In the
statement a > b & c > d | x > y, the relational comparisons a > b, c > d and
x > y are evaluated first, then the part a > b & c > d is evaluated, finally a > b
& c > d | x > y is evaluated.

The following examples assign a value to the variable x under certain conditions:

Example 9:

...

r = randn() % sample a standard normal random variable

if r < 0 | r > 1 %’or’ comparison
 x = 1
else
 x = 2
end

x = 0
if r > 0 & r < 0.1 %’and’ comparison
 x = 1
end

P a g e | 65

Example 10:

if a > 1 | b < 10 %’or’ comparison
 x = 1

end

Example 11:

if a > 1
 if b < 10
 x = 1
 else
 x = 2
 end
end

P a g e | 66

3.7 Array in ThetaML

We can define an array in ThetaML in several ways.

Arrays can be defined in Matlab6 style, using the range operator

 [from : to]
or
 [from : stepSize : to].

Examples:

% S is an array of length 5;
% it ranges from 1 to 5,
% with increments of 1
n = 5

S = [1:n]

or

% S is an array of length 50,
% ranging from 1 to 50,
% with step size 0.5
n = 50
S = [1:0.5:n]

Array dimensions are fixed at compile time.

Array can also be defined by direct assignment

% S is an array of length 4, with values 1,2,3,4

S = [1, 2, 3, 4]

6 Matlab is a registered trademark of The MathWorks Inc.

P a g e | 67

In this case, the compiler automatically detects the length and type of the array S.

In cases when the compiler cannot detect the array type (which occurs rarely), ar-
ray can be declared using the type keyword after the import/export statements:

 type stocks float[10]

The array stocks is of float type with size 10. Note the size of the array in the square
bracket has to be a literal constant number, such as 10 in the above example.

In ThetaML, array elements are accessed with C-style square brackets [] after the
array name. Unlike C and like Matlab, ThetaML array indexes start at 1.

Example of array indexing in ThetaML:

 A = [1, 2, 3, 4]
 X = A[1] + A[3] % A[1] = 1, A[3] = 3,

 % and X = A[1] + A[3] = 1 + 3 = 4

The assignment = operator is applicable to array types. An array can be assigned
to another array. A scalar value can also be assigned to an array, in which case
each element of the array takes the same value as the assigned scalar value.

Examples of array assignment are given below:

Example 12:

 % A is automatically an array of the same length
 % and with the same values as B
 B = [1, 2, 3, 4] % the elements of B are float numbers

 A = B % element-by-element array assignment

P a g e | 68

Example 13:

 % A is an array with length n
 A = [1:n] % A is an array of length n
 A = 1 % equivalent to A = [1,…,1],

 % i.e. n numbers of 1

Example 14:

 % A is an array of type float with length 4.
 % It is explicitly defined using the keyword type after
 % the import/export statements

 type A float[4] % A is an array of float with length 4

 b = 1 % b is of type float
 A = b % equivalent to A = [1, 1, 1, 1]

The numeric types are of double precision floating-point numbers in the above
examples. In Example 13, if the length of the array n is a floating-point number
with decimal points, the value of n is rounded down to the nearest integer value.
For example, if n is 10.2, the length of the array A is actually 10. If n takes the value
of 10.8, the length of the array A is also 10. The length of an array can be obtained
using the length() function in ThetaML Script. Details on the length() function
can be found in section 3.12.3.

P a g e | 69

3.8 The loop … end Statement

Repeated executions can be achieved using the loop … end statement. The loop
statement requires a length parameter that must be set at compile time. The pa-
rameter defines the type of loops. It can be an integer for a finite number of itera-
tions, or the keyword inf, where the loop runs as long as the model is run. The
loop statement can also take an array as a parameter, in which case the loop will
iterate over the elements of the array.

3.8.1 Fixed Length Loop

Fixed length loops are defined by a loop command followed by the number of
iterations.

The fixed length loop statement:

 loop <number of cycles>

 end

Variables are initiated at the start of the loop.

A fixed loop … end example:

Example 15:

1: x = 5 % x is initialized with value 5
2: loop 5 % loop 5 times
3: x = x + 1 % increment the value of x by 1 at each loop

4: end

P a g e | 70

In Example 15, the variable x is initialized with a value of 5 (line 1), then it goes
though a loop 5 times (line 2 - line 4) and is assigned a final value of 10.

The following example uses a fixed loop to update the process y up to time t:

Example 16:

 1: t = 1 %time horizon
 2: ht = 0.3 %time step
 3: y = 1 %initial value of y

 4: % a fixed loop of length floor(t/ht), where floor()
 5: % means round down to the nearest integer value
 6: loop t/ht

 7: % time passes by ht time step
 8: theta ht

 9: % update y for the time step ht
10: y = y * exp(-0.05 * ht)
11: end

12: theta t - @time
13: y = y * exp(-0.05 * @dt)

In Example 16, the variable y is initialized at 1 (line 3), it is then updated during the time
steps until time t with the fixed loop loop … end. The fixed loop length is the value of t/
ht rounded down to the nearest integer value, i.e. 3. The numerator t and the denomina-
tor ht are of float type, since in ThetaML numeric types are floating-point numbers. Line
8 passes ht time using the theta command. Line 10 updates the value of y for the time
step ht. After 3 loops with each loop progresses time by 0.3, the time remaining till time
t is 0.1 (1 - 3*0.3). Line 12 creates the residual time step which is required to step from
the current model time to time t (t - @time =1 - 3*0.3 = 0.1). The @dt parameter at line
13 extracts the residual time to the next model time point t, i.e. @dt = t - @time = 0.1.

P a g e | 71

3.8.2	 Infinite	Length	Loop	loop inf … end

When using inf as the loop length, the loop is run until all other threads (sharing
the same model time axis) with fixed-length loops have finished their iterations.
This is useful when computing time series of an arbitrary length or when writing
subroutines for financial products whose lifetime is automatically extended to
the desired length depending on a specific pricing application.

The infinite loop statement:

 % unbounded loop ...
 loop inf
 theta @dt % passes an arbitrary time
 end

or

 % unbounded loop ...
 loop inf
 theta <time interval> % passes explicit time step
 end

A stand-alone loop inf … end example where the loop runs forever:

Example 17:

 x = 0 % initialize x with 0
 %infinite loop
 loop inf
 x = x + 1 % increment the value of x by 1
 theta @dt % passes time by @dt time unit
 end

P a g e | 72

An example of loop inf … end where the loop length is determined by a fixed-length
loop sharing the same model time axis:

Example 18:

 % fork … end block, runs parallel with other code blocks
 1: fork
 2: y = 0 % initialize y at 0

 3: % infinite loop, it stops when the fixed loop below stops
 4: loop inf
 5: theta 1 % time passes by 1 unit from time 0
 6: y = y + 1 % increment y by 1 each time
 7: end
 8: end

 9: % loop 2 times, this loop runs parallel with fork … end block
10: loop 2
11: theta 3 % each loop passes time by 3 units
12: end
13:
14: x = y % time is now at 6, x = 6

In Example 18, the fork … end block (line 1 - line 8) runs in parallel with the
loop … end block (line 10 - line 12) that follows it. Since the two blocks share
the same model time axis, the infinite loop loop inf … end (line 4 - line 7)
within the fork … end block runs until the fixed length loop (line 10 - line 12)
stop running, in this case, the loop runs 2 times. After 2 loops with each loop
passing by 3 time units, both loops stop at time 6. The value of y is initialized
at 0 (line 2) and is incremented by 1 after each time unit (line 6). After 6 loops, y
has the value 6. At time 6, x is assigned the value of 6 (line 14).

Note: In the same timing model, the infinite loop loop inf runs until all other
fixed length loops stop running.

P a g e | 73

3.8.3 Array Looping

Loops can be used to iterate over arrays, much like the for … each statement in many
other programming languages. Loops over an array repeat the loop body once for ev-
ery component of the array. For loops over arrays, the loop keyword is followed by a
variable that serves as an iterator for each array component, then a colon “: ” followed
by the array to be cycled. The iterator points directly to the array element, so opera-
tions on the iterator are in fact operations on the corresponding element of the array.
The keyword indexOf()returns the matching index of the element of the array.

The array loop statement:

loop array_iterator : array
 % loop body
 index = indexOf(array_iterator)
end

An example for a loop over an array:

Example 19:

 % define the array A
 A = [1, 2, 3, 4]

 % ’a’ serves as an iterator for the array A
 loop a : A % loop through the array A
 a = a^2 % square the value of the array element denoted by a
 end % after the loop, A = [1, 4, 9, 16]

In Example 19, the loop cycles over the elements of the array A and squares the
value of each of its elements. Note that the array A is defined in the model body. In
cases when an array is imported into the model, the values of the input array can
not be changed inside the model.

P a g e | 74

3.8.4 Multiple Array Looping

Loops in ThetaML can simultaneously cycle over multiple arrays, given that the
arrays are of the same length. An iterator is defined for each array so that at the
nth cycle of the loop each iterator points to the nth element of its corresponding
array. Additionally, it is possible to iterate over a previously undefined array, in
which case the size of the undefined array is determined by the size of other ar-
rays within the same loop. This allows the user to build an array on the fly.

The following is an example for loop over multiple arrays.

Example 20:

 1: % define the array A
 2: A = [1, 2, 3, 4]

 3: % define the array B
 4: B = [1, 2, 2, 2]

 5: % loop through the elements of array A and B, and
 6: % build a new array X. a, b, x serve as array iterators
 7: loop a, b, x : A, B, X
 8: % sum up the values denoted by a and b, and assign
 9: % the value to the element denoted by the iterator x
10: x = a + b
11: end
12: % after the loop, X = [2, 4, 5, 6]

In Example 20, arrays A and B are both of size 4. The loop cycles over each ele-
ment of the arrays (line 7). The variables a and b serve respectively as iterators
for arrays A and B. The variable X is previously undefined and is automatically
determined to be an array with the same length as arrays A and B. The elements of
X take their values in the loop body via the statement x = a + b (line 10).

P a g e | 75

Equivalently, the above loop could be replaced by the statement X = A + B. Array
assignment, addition, subtraction, multiplication and division are supported in
ThetaML. Array multiplication and division are performed element-wise, involv-
ing no matrix math.

P a g e | 76

3.9 Calling A Sub-model

Sub-model refers to the model called by other model(s). Sub-models can be called
with a call statement in a ThetaML model. When using a call statement in Thet-
aML, the called sub-model must be supplied with all the arguments as required by
its import statements. Values exported by the sub-model can be optionally import-
ed by the calling model. All arguments in ThetaML are passed similar to passing by
reference. Hence not only static values but also processes whose values change in
time can be passed to called sub-models.

The call command:

call <model name>
 export <local variables>
 import <remote variables>

or

call <model name>
 export <local variables> to <remote variables>
 import <local variables> from <remote variables>

P a g e | 77

Implicit fork … end

In ThetaML, a model call is implicitly a statement within a fork … end block, i.e.

 call <model name>
 export <local variables>
 import <remote variables>

is equivalent to

 fork
 call <model name>
 export <local variables>
 import <remote variables>
 end

The implicit fork … end enables the processes imported from the called model to
run virtually parallel in model time with processes in the calling model.

Note: In ThetaML, model call is implicitly within a fork … end.

The following examples show how to call a model in ThetaML.

Example 21:

1: % the sub_model is called by another model
2: call sub_model
3: export a, b % export the local variables a, b
4: export a + b to c % export a + b to the remote variable c
5: import x, y % import the remote variables x, y
6: import z from x + y % import in the local z from x + y

P a g e | 78

In example 21, the sub_model imports (reads) the variables a, b and c and ex-
ports (returns) variables x and y.

When the model sub_model is called by another model, the calling model exports
its parameter variables a and b to the corresponding variables a and b in sub_
model (line 3). It also exports a + b to the variable c in sub_model (line 4).
The calling model in turn imports the variables x and y returned by sub_model
(line 5), and also imports (creates) a variable z from x + y (line 6).

When calling a sub_model, if the variables passed by the calling model have dif-
ferent names from those in the sub_model, we add the keyword to in the export
statement and the keyword from in the import statement. Specifically, we export
the local variables to the corresponding variables in the sub_model, and we im-
port (or create) local variables from the variables exported by the sub_model.

Example 22:

Suppose now we wish to call a sub_model from another model.

 % the sub_model is to be called later by other models
 1: model sub_model
 2: import x “Step size”
 3: export y “Incremented process”
 4:
 5: y = 0 % initialize y at 0
 7: loop inf % infinite loop
 8: theta 1 % time passes by 1 time unit
 9: y = y + x % increment the process y by a step size x
10: end
11:
12: end

The above sub_model imports the variable x as a step size (line 2), and uses it to
increase the process y that is initialized at 0. The sub_model returns the result in

P a g e | 79

the variable y after every passing time unit (theta 1 at line 8) and for all units
of time (loop inf).

In our calling model, we set a step size x = 1 (line 1), then call the sub_model by
exporting x to it (line 5) and read the result back in the variable y by importing
from the sub_model (line 8).

 % a calling model that calls the sub_model
 1: x = 1 % set the step size x = 1
 2: call sub_model % call the sub_model
 3: % export the local variable x to the corresponding x
 4: % in sub_model
 5: export x
 6: % import the values for the local variable y
 7: % from the corresponding y in sub_model
 8: import y
 9:
10: % result: y ~ 0 - 1 - 2 - 3 - ...

Equivalently, we can call the sub_model by directly exporting a value of 1 to x (line
4) and reading the result back in a variable A (line 7) as follows:

 %a calling model that calls the sub_model
 1: call sub_model
 2: % export the value 1 to the variable x
 3: % in sub_model
 4: export 1 to x
 5: % import in (create) the local variable A the values
 6: % from the y returned by the sub_model
 7: import A from y
 8:
 9: % result: A ~ 0 - 1 - 2 - 3 - ...

P a g e | 80

Example 23:

This example shows the power of passing processes as model arguments. We can
call our sub_model once to first create a time series equivalent to either y or A in
example 22, and thereafter use this process as an input argument for the step size
of a second process.

 % call the sub_model to create a process y with
 % a time step of 1
 call sub_model
 export 1 to x % export 1 to the variable x in sub_model
 import y % import the returned values in a local
 % variable y
 %result: y ~ 0 - 1 - 2 - 3 – 4 – 5 - ...

 % call the sub_model again to export the just
 % created y process as the changing step size for another
 % process which is imported as A
 call sub_model
 export y to x % export y to the variable x in sub_model
 import A from y % import the returned values in a local
 % variable A

 %result: A ~ 0 - 1 - 3 - 6 - 10 - 15 - ...

P a g e | 81

We now show a complete example of a model call in ThetaML.

Example 24:

1: model calling_model
2: export y
3:
4: % the value of z is imported from sub_model; y = 100
5: y = z!
6: call sub_model
7: % export 10 to x in sub_model
8: export 10 to x
9: % import in z the values (100) from y in sub_model
10: import z from y
11:
12: end

13: model sub_model
14: import x
15: export y “x squared”
16:
17: y = x^2
18:
19: end

In example 24, the calling_model calls the model sub_model, and exports a value
of 10 to the x in sub_model (line 8), then imports in z the value of y = x^2 (line
10). In the calling_model, the future operator “!” accompanying the variable z
(line 5) accesses the value of z imported next from the sub_model (line 10), and
assigns it to y (line 5).

P a g e | 82

3.10 Matlab Native Access

It is one of the design principles of ThetaML to transparently provide access to the
functionalities of the target language. Our main target host language is Matlab.
There are two main mechanisms in ThetaML that provide accesses to Matlab:

	 Calling Matlab functions
A Matlab function call maps a number of input parameters to one output
parameter. It takes the simple form of y = f(a, b, …) in ThetaML.

Matlab function calls have the following properties:

• No internal state
• No global variables allowed

	 Calling Matlab complex stepping object
The complex stepping object is implemented in native Matlab m-code.
It may have an internal state and usually has a behavior depending on
model time.

Because this called complex stepping object steps through model time
along with other processes in the calling ThetaML model, this object is
also known as stepping function.

A complex stepping object has the following properties:

• The object has an internal state.
• The object can import other processes.
• The object can have construction parameters.
• All variables and their stochastic dependencies must be inspectable

through the Application Programming Interface (API).

P a g e | 83

3.10.1 Calling Matlab Functions

Matlab functions can be called in ThetaML by directly typing their function names.
Only one variable can be returned by a function and the parameters of the func-
tion are only defined in terms of the elements of a vector or matrix.

The following example ThetaML calls a MATLAB function atan:

 x = 1

 y = atan(x)

if Matlab is the default backend; otherwise the explicit form

 x = 1

 y = @matlab : atan(x)

must be used.

User-defined Matlab m-files must be vectorized before they are called in Thet-
aML, the m-files must be located on the Matlab path.

Note: When Matlab functions are accessed in ThetaML, they must be vector-
ized. This is to ensure smooth handling of different Monte Carlo paths in the
first dimension of each variable used in a ThetaML model.

P a g e | 84

An examples of nonvectorized versus verctorized Matlab functions:

% function not vectorized
function result = f_nonvectorized(x)
 result = scalarFunction(x);
end

%simple vectorized function
function result = f_vectorized(x)
 result = zeros(size(x,1), 1);
 for i = 1:size(x,1)
 result(i) = someFunction(x);
 end
end

%function vectorized using Matlab matrices
function result = f_vectorizedMatlab(x, y)
 result = x .* y + randn(size(x));
end

P a g e | 85

3.10.2 Calling a Complex Stepping Object

The link to a Matlab stepping object (stepping function) is made explicitly by call-
ing the Matlab stepping object with a ThetaML command:

 call @matlab : <stepping function>
 export <local variables>
 import <remote variables>

or
 call @matlab : <stepping function>
 export <local variables> to <remote variables>
 import <local variables> from <remote variables>

The called stepping object allows many sophisticated interactions but it must
implement in Matlab the methods listed in Table 1.

Method Description

Init() Reset the model to its initial state (this method is optional)

Step(dt) Proceed the model by time dt. Throw random numbers if
required

SetValues(name, value) Set a state variable with name to the new value

GetValues(name) Get the value of a variable name computed by this model

GetModelVariables() Give a list of imported and exported variables for this mode

Table 1. Methods for the Matlab stepping object.
Column 1 lists the methods that must be implemented for the complex stepping object, column 2 gives a
short description for the methods.

P a g e | 86

The general function header for the Matlab stepping object consists of method
definitions and a construction from a Parameters object. This type of object inter-
actions only works for Monte-Carlo evaluations. The structure of the Parameters
object is guaranteed to contain at least one field: NoOfScenarios, with the number
of Monte-Carlo paths as its parameter value.

P a g e | 87

Below is a general function header for the Matlab stepping object:

% Function header for the complex stepping object.
% The function takes a ‘Parameters’ object as argument,
% and returns a struct ‘model’
function model = ModelName(Parameters)

% The following struct fields must be implemented in this
% function and must return the function handles with ‘@’
% notation.
model.Step = @Step;
model.SetValues = @SetValues;
model.GetValues = @GetValues;
model.GetModelVariables = @GetModelVariables;
model.Init = @Init; % (optional)

if nargin > 0
 %construct the object
else
 %construct an empty object for import variable inspection
end

P a g e | 88

The model variable(s) returned by the GetModelVariables method must be a structure
with fields for each relevant variable. Each field must have, for each variable, the sub
fields listed in Table 2.

comment A human readable description of the roles of the variables in the model

Visibility
The flag Visibility can be set to import or export, it determines
whether the variable is imported as an input argument or exported as an
output variable returned by the model

IsState
For export variables, this Boolean flag indicates whether the variable is
part of the minimal Markov state which is required to make a best guess
for the future value of all exported variables

Size / Type

The flag Size indicates the dimension of a model variable, excluding the
scenario dimension.

For non-numeric types†, the Type field can be set to ‘Object’ or
‘String’7. Import variables can also have their Type set to ‘File’8

which indicates that the value must be the Uniform Resource Identifier
(URI) of an existing file

Table 2. Sub-Structure Fields for the GetModelVariables Method
The sub-structure fields are listed in column 1, their respective descriptions are given in column 2.
† For details on variable types in ThetaML, please refer to Chapter 4.

7 Object and String are ThetaML internal type.
8 File is a ThetaML type.

P a g e | 89

To guarantee the correctness of the generated code, it is critical that the internal
state of the object can be inspected as relevant. All variables that can be used to
infer the stochastic properties of the variables must be made explicit. Addition-
ally, variables can be marked as being part of the minimal Markov state by setting
IsState = true. By minimal Markov state we mean that the variables satisfy the
Markov property and that with minimal amount of representative information, it
is sufficient to make best guesses for the future state. A Visibility setting can
hide a variable from its explicit use in ThetaML.

Below, there are some examples for Matlab stepping functions and use of the Mat-
lab stepping functions in ThetaML.

P a g e | 90

Example 25:

We start with a simple option pricing example that uses a Matlab stepping func-
tion to short-step the stock price process. Copy the following model into a new
Matlab file and save it under the name GBMModel.m.

 % The Matlab function GBMModel takes a ‘param’ object as
 % argument, and returns a Matlab struct ‘model’
 1: function model = GBMModel(param)
 2: % The following struct fields must be implemented in this
 3: % function and must return the function handles with ‘@’
 4: % notation.
 5: model.Step = @Step;
 6: model.SetValues = @SetValues;
 7: model.GetValues = @GetValues;
 8: model.GetModelVariables = @GetModelVariables;
 9: model.Init = @Init; % optional function
10:
11: % if the number of function arguments is larger than zero
12: if nargin > 0
13: % remember initial values of imports stored in ‘param‘
14: model.vola = param.vola; %stock price volatility ‘vola’
15: model.r = param.r; %risk-free interest rate ‘r’
16: model.S0 = param.S0; %initial stock price ‘S0’
17:
18: % prepare initial values for exports
19: % initialize stock prices
20: model.S = param.S0 * ones(param.NoOfScenarios,1);
21: % initialize discount factors
22: model.Discount = ones(param.NoOfScenarios,1);
23: end
24:
25: % this function returns a struct ‘vars’ with fields and
26: % subfields for all relevant variables
27: function vars = GetModelVariables
28: % create a struct for ‘S’, set: the field value for
29: % ‘comment’ to ‘Stock price’, the field value for
30: % ‘Visibility’ to ‘Export’, and the field value for
31: % ‘IsState’ to ‘true’. ‘S’ is itself a field of the

P a g e | 91

32: % struct ‘vars’
33: vars.S = struct (‘comment’, ‘Stock price’, ...
34: ‘Visibility’, ‘Export’, ...
35: ‘IsState’,true);
36: % create a struct for ‘Discount’
37: vars.Discount = struct (‘comment’, ...
38: ‘Discount process’, ...
39: ‘Visibility’, ‘Export’, ...
40: ‘IsState’,false);
41: % create a struct for ‘vola’
42: vars.vola = struct(‘comment’,’vola’, ...
43: ‘Visibility’,’Import’);
44: % create a struct for ‘S0’
45: vars.S0 = ...
46: struct(‘comment’,’S0’,’Visibility’,’Import’);
47: % create a struct for ‘r’
48: vars.r = struct(‘comment’,’Interest rate’, ...
49: ‘Visibility’, ‘Import’);
50: end
51: % set the value of ‘var’ to ‘value’
52: function SetValues(var, value)
53: model.(var) = value;
54: end
55: % get the values of ‘varName’
56: function X = GetValues(varName)
57: X = model.(varName);
58: end
59:
60: % this function steps the process S for the time step dt
61: function Step(dt)
62: % Geometric Brownian motion for stock price process ‘S’
63: model.S = model.S .* ...
64: exp((model.r - 0.5 * model.vola^2) * dt...
65: + sqrt(dt) * model.vola * ...
66: randn(size(model.S)));
67:
68: % constant interest rate ‘r’ as the decaying rate
69: model.Discount = model.Discount * exp(- model.r * dt);
70: end
71:
72: end

P a g e | 92

In the Matlab function GBMModel, the function header consists of the name of the
function GBMModel, the input argument object param, and the returned struct
model.

Line 5 - 9 define the fields of the struct model. The fields of the model are embed-
ded functions defined next in the function GBMModel. The function @Init at line 9
is optional.

The if block in line 12 - 23 initialize the parameter values if the number of func-
tion arguments is larger than zero.

The embedded function GetModelVariables (line 27) takes no arguments and
returns a struct of variables vars. The first state variable S in the struct vars has
subfields: comment with value ‘Stock price’, Visibility with value ‘Export’,
and IsState with value true. The parameter Discount is also a struct, it has sub-
fields: comment with value ‘Discount process’, Visibility with value ‘Ex-
port’, and IsState with value false. The constants vola, r and S0 are structs
with similarly valued fields. The subfield Visibility has value ‘Import’ or ‘Ex-
port’ depending on whether the variable is an import parameter or an export
parameter. If the subfield IsState of a variable is set to the value true, the vari-
able is part of the minimal Markov states. In this function, the state variable S is
marked as part of the minimal Markov states which are used to make best esti-
mates about the future state.

The embedded function SetValues sets the state variable named var to value.
The state variable var can take many values.

The embedded function GetValues returns the values of varName.

The embedded function Step progresses the stock prices S and updates the dis-
counting process Discount, for a time step of dt. It is this function that enables

P a g e | 93

the struct model to have a behavior depending on model time when called by a
ThetaML model.

P a g e | 94

Next, we call the GBMModel.m in a ThetaML model that prices an Asian option; the
ThetaML model is given below:

 % This ThetaML model prices a fixed strike Arithmetic Asian
 % Call option. It calls the Matlab stepping function
 % GBMModel to short-step the stock price process and the
 % discount factors
 1: model callGBM
 2: % This model exports a stock price process ‘S’, a discount
 3: % factor process ‘CUR’, and the simulated Asian Call option
 4: % prices ‘AsianOption_CUR’
 5: export S “Stock price process”
 6: export CUR “Discount process denominated in currency CUR”
 7: export AsianOption_CUR “Present values of an Asian option”
 8:
 9: % call the Matlab stepping function GBMModel
10: call @matlab:GBMModel
11: export 0.4 to vola % export the value 0.4 to ‘vola’
12: export 100 to S0 % export the value 100 to ‘S0’
13: export 0.05 to r % export the value 0.05 to ‘r’
14: % import in the local variable ‘S’ the values of the
15: % remote variable ‘S’ returned in the function
16: % GBMModel
17: import S from S
18: % import in the local variable ‘CUR’ the values of
19: % the remote variable ‘Discount’ returned in the
20: % function GBMModel
21: import CUR from Discount
22:
23: Average = 0 % initialize the arithmetic ‘Average’ to 0
24: loop 10 % loop 10 times
25: theta 1/10 % time passes by ‘1/10’ time units
26: % update the arithmetic ‘Average’
27: Average = Average + S/10
28: end
29: % Asian Call option payoffs, discounted to time 0 by
30: % the discount factors ‘CUR’
31: AsianOption_CUR = max(Average - 100,0) * CUR
32: end

P a g e | 95

After running this model in Theta Suite with the number of Monte-Carlo paths set
to 10,000, we obtain the mean value 11.243 for AsianOption_CUR.

In the model callGBM, line 5, line 6 and line 7 respectively exports the stock
price process S, the discount factor process CUR, and the simulated Asian Call op-
tion prices AsianOption_CUR.

In ThetaML, model calls implicitly create a fork. i.e., the called model bodies are
executed virtually parallel with other code blocks in model time. Calls of exter-
nal Matlab models implemented with the Step(dt)9 method has a model time
behavior, which means that it steps through model time along with other pro-
cesses in the calling ThetaML model. In this case, the Matlab stepping function
GBMModel has an embedded Step(dt) function (line 61 in the function GBMModel).
The Step(dt) function is interpreted by the ThetaML compiler as if a theta @dt
command were passed. The theta @dt command enables model time passing at
an arbitrary time interval, meaning the parameter @dt extracts the time interval
to the immediate next model time point.

From the called Matlab function GBMModel, we import the stock price process in S
(line 17) and the discount factor process in CUR (line 21).

Next, line 23 to 28 computes an arithmetic average Average based on the stock pric-
es on a set of fixed times (1/10, 2/10, …, 1), spaced at constant time interval 1/10.

At option maturity time (line 31), the fixed strike Asian Call option payoffs are de-
fined and discounted to time 0 using the discount factors CUR. Discounting future
cash flows to time 0 is a convention we very often use in ThetaML models, so that
we always talk about future cash flows in present value terms.

9 For a description of the Step(dt)method, please refer to section 3.10.2.

P a g e | 96

Example 26:

Another example Matlab stepping function ExternalModule is shown below:

 % The function ExternalModule takes a ‘param’ object as
 % argument, and returns a Matlab struct ‘model’
 1: function model = ExternalModule(param)
 2:
 3: % the following are fields for the struct ‘model’
 4: model.GetModelVariables = @GetModelVariables;
 5: model.GetValues = @GetValues;
 6: model.SetValues = @SetValues;
 7: model.Step = @Step;
 8: % initialize relevant parameter values
 9: if nargin > 0
10: model.vola = param.vola;
11: model.Discount = param.Discount;
12: model.S0 = param.S0;
13: model.S = param.S0*ones(param.NoOfScenarios,2);
14: end
15: % this function returns a struct ‘vars’ with fields
16: % and subfields for all relevant variables
17: function vars = GetModelVariables
18: % S has a description string ‘Stock price’
19: vars.S.comment = ‘Stock price’;
20: % S is exported as output and is visible to the
21: % calling ThetaML model
22: vars.S.Visibility = ‘Export’;
23: % S is marked as part of the minimal Markov state
24: vars.S.IsState = true;
25: % S has two dimensions: the first dimension is the
26: % number of Monte-Carlo Scenarios, the second is the
27: % number of stocks
28: vars.S.Size = 2;
29: % create struct fields for ‘S2’
30: vars.S2.comment = ‘Double Stock price’;
31: vars.S2.Visibility = ‘Export’;
32: vars.S2.IsState = false;

P a g e | 97

33: vars.S2.Size = 2;
34: % vola is an imported parameter, and is visible to the
35: % calling ThetaML model
36: vars.vola = struct(‘comment’,’vola’, ...
37: ‘Visibility’,’Import’);
38: vars.S0 = struct(‘comment’,’S0’, ...
39: ‘Visibility’,’Import’);
40: vars.Discount = struct(‘comment’,’Discount’, ...
41: ‘Visibility’,’Import’);
42: end
43: % sets the value of state variable ‘var’ to ‘value’
44: function SetValues(var, value)
45: model.(var) = value;
46: end
47: % gets values for the argument string ‘str’
48: function X = GetValues(str)
49: % if the string argument ‘str’ is the same as ‘S’
50: if strcmp(str,’S’)
51: % assign the discounted prices of S to X
52: X(:,1) = model.S(:,1) .* model.Discount;
53: X(:,2) = model.S(:,2) .* model.Discount;
54: elseif strcmp(str,’S2’)
55: X = 2*GetValues(‘S’);
56: end
57: end
58: % this function steps the process S for the time step dt
59: function Step(dt)
60: model.S = model.S + param.vola .* sqrt(dt)…
61: *randn(size(model.S));
62: end
63:
64: end

In the Matlab function ExternalModule, the function header consists of the name
of the function ExternalModule, the input argument object param, and the re-
turned struct model.

Line 4 - 7 define the fields of the struct model. The fields of the model are embed-
ded functions defined next in the function body.

P a g e | 98

The embedded function GetModelVariables (line 17) takes no arguments and
returns a struct of variables vars. The first state variable S in the struct vars has
subfields: comment with value ‘Stock price’, Visibility with value ‘Export’,
IsState with value true, and Size with value 2. The second state variable S2 in
the struct vars has subfields: comment with value ‘Double Stock price’, Vis-
ibility with value ‘Export’, IsState with value false, and Size with value
2. The constants vola and S0 are structs with similarly valued fields. The pa-
rameter Discount is also a struct and is imported as a process parameter. The
subfield Visibility has value ‘Import’ or ‘Export’ depending on whether the
variable is an import parameter or an export parameter. If the subfield IsState
of a variable is set to the value true, the variable is part of the minimal Markov
states. In this function, the state variable S is marked as part of the minimal Mar-
kov states, while the state variable S2 is not. This is because the double stock
price S2 contains virtually the same amount information as what is already in S.
As such, including S only is enough to make best guesses about the future state.

The embedded function SetValues sets the state variable named var to value.
The state variable var can take many values. The embedded function GetValues
is a simple recursive function, the if condition compares the string argument str,
if it evaluates to ‘S’, the function returns a two-dimensional stock prices S. If it
evaluates to ‘S2’, the function calls itself (line 55) and returns a two-dimensional
double stock prices S2.

The embedded function Step progresses the stock prices S for a time step of dt.
It is this function that enables the struct model to have a behavior depending on
model time when called by a ThetaML model.

The stepping function ExternalModule is called in ThetaML by the command

 call @matlab : ExternalModule

P a g e | 99

The ThetaML model packOrder illustrates the use of the Matlab stepping function
ExternalModule:

 % The ThetaML model ‘packOrder’ calls the Matlab stepping
 % function ‘ExternalModule’. The processes ‘S’ and ‘S2’ in
 % the called ‘ExternalModule’ runs virtually parallel with
 % other processes in the calling ThetaML model ‘packOrder’
 1: model packOrder
 2: % This model exports the values of a stock portfolio ‘V’, a
 3: % discount factor process ‘Discount’, and stock prices ‘S’
 4: import r “Constant interest rate”
 5: export V, Discount, S
 6:
 7: % a fork … end block
 8: fork
 9: % initial value of the discount factors
10: Discount = 1
11: % infinite loop
12: loop inf
13: % time passing of @dt time interval
14: theta @dt
15: % update the discount factors
16: Discount = Discount * exp(-r * @dt)
17: end
18: end
19: % call the Matlab function ‘ExternalModule’
20: call @matlab : ExternalModule
21: export Discount % export the Discount factor process
22: export 100 to S0
23: export 0.4 to vola
24: import S2, S % import the processes S2 and S
25: % a fixed loop of length 10
26: loop 10
27: % time passing of 1 time unit
28: theta 1
29: % the values of V! wait to be decided later
30: V = 0.5 * E(V!) + 0.5 * S
31: end

P a g e | 100

32: % V has the values of S2, V! at line 30 references this V
33: V = S2
34: end

In the model packOrder, line 4 imports a constant interest rate r. Line 5 exports
the values of V, the discount factors Discount, and stock prices S.

The fork … end block (line 8 - line 18) runs in parallel with the other processes
outside the fork block, i.e. the called external Matlab model (line 20 - line 24)
and the fixed-length loop loop … end (line 26 - line 31).

Calling the Matlab function ExternalModule implicitly creates a fork. The func-
tion ExternalModule has an embedded Step(dt) function that steps forward the
stock price process and the discount factor process in model time along with oth-
er processes in the model packOrder.

The implicit fork around the fixed loop loop … end enables the processes inside
the loop run virtually parallel in model time with other processes.

Within the fork … end block, the discount factor Discount is initialized at 1, then
it enters an infinite loop loop inf and is discounted at a constant rate r at each
time step @dt.

The infinite loop loop inf runs until the fixed loop (line 26 - line 31) stops
running, i.e. it runs 10 times as well. The time interval parameter @dt extracts
the model time interval 1 as passed by the theta command (line 28) within
the fixed-length loop. The ThetaML compiler passes as well this time interval of
length 1 to the dt parameter of the Step(dt)function in the called Matlab model
ExternalModule. The called ExternalModule is supplied with the local process
Discount, a value of 100 to S0, and a value of 0.4 to vola. The ThetaML model
packOrder imports the two processes S and S2 from ExternalModule.

P a g e | 101

The fixed loop loop … end (line 26 - line 31) repeats 10 times, each loop passes
the time by 1 time unit (theta 1 at line 28). At each passing time step, the vari-
able V is updated at line 30. The variable V! at line 30 is referenced with the
future operator “!”. The future operator “!” enables V at line 30 to access its
future values. To evaluate the variable V, we start from line 33, where V = S2 at
time 10 (10 loops with each loop passing by 1 time unit). Then we go backwards
and update the values of V iteratively. Since there is no time passing between line
30 and line 33, the variable V! at line 30 evaluates to the values of S2 at line
33, the values for V at time 10 are updated as: V = 0.5 * E(S2) + 0.5 * S =
0.5 *(S2 + S). We have this equality because S2 is known at time 10, as such
E(S2) = S2. At time 9, the variable V! evaluates to the values of V at time 10 (i.e. V
= 0.5 *(S2 + S)), the values for V at time 9 is: V = 0.5^2 * E(S2 + S) + 0.5
* S2, where E(S2 + S) is the best guess of S2 + S conditional on the information
at time 9. Continuing backwards, we arrive at the time 0 the values of V.

Since in ThetaML process variables implicitly incorporate scenario and time in-
dices, the variables S, S2, Discount and V contain values for all the Monte-Carlo
paths, as such we talk about the values of S, S2, Discount and V in plural forms.

Note: The Matlab stepping function steps through model time along with the
other processes in the calling ThetaML model.

P a g e | 102

3.11 ThetaML Operators

The Future Operator “!”

A unique feature of ThetaML is the ability to access the values assigned to vari-
ables at future time points. This is achieved with the future operator “!” 10.

Like other programming languages, ThetaML accesses the value of a variable that
is pre-assigned. In cases where the code statements are not evaluated sequen-
tially, ThetaML can access ahead the value of a variable assigned at future time
points. Access to the future value of a variable is enabled in ThetaML by the future
operator “!”.

Example 27:

The following example assigns the next value of y = 3 to x. Any command that
changes the value of y also changes the value of x.

% the future operator “!” acts like a function on y,

% as such the value of y! waits to be determined later

x = y!
...

y = 3 % y has the value 3, and y! = 3

10 Note that circular definitions are not allowed in ThetaML.

P a g e | 103

Example 28:

In some cases, no single instance can determine the value of a future-referenced
variable. The value of the referenced variable is then determined as if the pro-
gram had been run in reversed command order.

1: x = y! % result: x = 0 if a > 1, x = 2 otherwise
2: if a > 1
3: y = 0 % if a > 1, y = 0, and y! = 0
4: end
5: y = 2 % if a <= 1, y = 2, and y! = 2

When y is future-referenced with the future operator “!” (y! at line 1), its value
is temporarily undermined. The future operator “!” looks into the future instance
when y has some definite value, this occurs at two instances: within the if block
(line 3) and after the if block (line 5). If the if condition evaluates to be true, y
= 0; otherwise, y = 2. The variable y then takes the correct value and assigns the
value back to x.

Example 29:

A special case occurs when a future-referenced variable is evaluated as part of the
if conditions. In such cases, future references consider only value assignments
after the if … end block. This avoids cyclical definitions of variables.

1: x = y! % x = 0
2: if y! > 1
3: y = 0
4: end
5: y = 2 % y has the value 2, and y! = 2 in the if condition

In the above example, the value of y! (in line 1) waits to be determined. The y! as
part of the if condition (line 2) accesses its next value of y, which is y = 2 after

P a g e | 104

the if … end block (line 5). Since y! = 2 in the if condition statement, the if
condition evaluates to be true, and the body of the if … end block is executed, i.e.
y = 0 (line 3). As a result, the first y! access this value 0 and assigns x the value 0.

Below are some additional properties of the future operator “!”:

 a!! == a!
(a + b)! == a! + b!

 f(a)! == f(a!)
 a[i]! == a![i] (not a![i!])

 E(a) == E(a!)
Beta(a,b) == Beta(a!,b!)

P a g e | 105

3.12 Functions

3.12.1 The Function E()

ThetaML evaluates the conditional statistical properties of variables or processes
with ease and speed. This is realized with the function E(). The function E() com-
putes the conditional expected value of a variable, a process or an expression,
conditional on all parameter values that are known at the corresponding model
time. The arguments of the stochastic function are assumed able to access their
future values assigned at future time points.

We use a simplified example to explain the E()function in ThetaML. Assume

y (ti+1) = b1 x(ti)1 + b2 x (ti)2 + b3 x (ti)3 + ϵ(ti+1),

where, for example, y (ti+1) is the value of a security based on the financial variable
x, and x(ti) is the price of a financial variable at time ti. The coefficients b1, b2 and
b3 are constant. The terms x(ti)1, x (ti)2

 and (ti)3
 are the price for the financial vari-

able at time ti, respectively to the power of 1, 2 and 3. The term ϵ(ti+1) is a Gaussian
random variable.

The E() function computes the expected value of the above formulation E(y(ti+1)│
σ(x(ti))) = b1 x(ti)1 + b2 x(ti)2

 + b3 x(ti)3, conditional all paths of the financial vari-
ables x(ti) at time ti. The term σ(x(ti)) denotes the smallest sigma field of the vari-
able x at time ti.

Graphically, the relationship between E(y(ti+1)│σ(x(ti))) and x(ti) , estimated with
linear regression method for the above formulation is given in Figure 2.

The E() function in ThetaML uses similar idea for estimating the relationship be-
tween E(y(ti+1)│σ(x(ti))) and x(ti) at time ti , only that it uses advanced numerical
algorithms optimized for more efficient and accurate results.

P a g e | 106

Example 30:

This example computes the variable x as the expected value of y! (E(y!) at line
4), conditional on the information known at time 5. The term y! at line 4 takes
the next value of y at time 10 which is y = S at line 6.

1: theta 5 % 5 time units pass
2: % x is set to the best guess value of y! conditional on
3: % time 5 information
4: x = E(y!)
5: theta 5 % another 5 time units pass
6: y = S % at time 10, y has the value of S at time 10

The future operator “!” accompanying y at line 4 can be omitted due to the
definition of the E()function, i.e.

 E(y!) == E(y)

P a g e | 107

Figure 2. The relationship between E(y(ti+1)│σ(x(ti))) and x(ti) at time ti. The term σ(x(ti))
denotes the smallest sigma field of the variable x at time ti.

The variable x(ti) is created as x(ti) = 100 e 0.01*ϵ (ti) , the variable y(ti+1) = e sin x (ti + 1) + 0.1 * ϵ(ti+1)

, where ϵ(ti+1) is the standard normal variable sampled for 1000 paths. The graph is based on
the equation E(y(ti+1)│σ(x(ti))) = b1 x (ti)1 + b2 x (ti)2 + b3 x (ti)3

 . In the graph above, the blue
colored dots are sample values for the variable x(ti) , the green line is the function value for
E(y(ti+1)│σ(x(ti))). This graph is generated in Matlab.

P a g e | 108

3.12.2 The Function Beta()

The Beta()function takes two arguments and computes the beta factor(s) be-
tween these two arguments, conditional on the current information. The first ar-
gument as the explanatory variable(s) can have multiple dimensions in which
case the Beta()function computes a beta factor for each component of that array.
The second argument is the dependent variable for the conditional regression.
The conditional regression is enabled with the future operator “!”, since condi-
tional regression involves future values of financial variables unknown at current
time and the future operator “!” allows access to future values.

Mathematically, the Beta()function is defined as

cov (V(ti+1) , S(ti+1)│ σ(S(ti)))
β (S(ti+1) ,V(ti+1) │σ(S(ti))) =

var (S(ti+1)│σ(S(ti)))
 ,

where, the term V(ti+1) is the dependent variable, S(ti+1) is the explanatory vari-
able. The operator (│) denotes conditioning. The numerator cov (V(ti+1) , S(ti+1)│
σ(S(ti))) computes the covariance between the variables V(ti+1) and S(ti+1) , condi-
tional on σ(S(ti)) - the time ti smallest sigma field of S(ti). The denominator var
(S(ti+1)│σ(S(ti))) computes the variance of S(ti +1) , conditional on time ti smallest
sigma field σ(S(ti)).

P a g e | 109

3.12.3 Other Functions

The length() Function

The length of an array can be determined using the length() function.

Example 31:

A = [1, 2, 3, 4] % A is an array with elements 1, 2, 3, 4
L = length(A) % result: L = 4

Example 32:

% S is an array of 2 stocks in S
L = length(S) %result: L = 2

P a g e | 110

3.13 System Parameters

System parameters are compile-time parameters, they can be extracted with a @
sign followed by the keywords dt or time.

3.13.1 The Parameter @dt

The synchronous time interval parameter @dt has different values depending on
its context.

If @dt is found following the theta command, it evaluates to the time interval of
the next smallest time step. If @dt is located elsewhere, it evaluates to the time
elapsed since the thread’s previous invocation of the theta command. The pa-
rameter @dt is most often used within the infinite loop loop inf … end.

Example 33:

This example simulates a standard Brownian motion process for all time steps;
the parameter @dt is an argument to the theta command.

 1: model BrownianMotion
 2:
 3: export W “Standard Brownian Motion process”
 4:
 5: W = 0 % initialize the W process at 0
 6: loop inf % infinite loop
 7: theta @dt % passes time by @dt time interval
 8: W = W + sqrt(@dt) * randn() % update the process W
 9: end
10:
11: end

P a g e | 111

In the example model BrownianMotion, line 5 initializes the Brownian Motion pro-
cess W at 0, the process then enters an infinite loop loop inf, the infinite loop runs
until all other fixed-length loops sharing the same model time axis stop running.
This happens when the model BrownianMotion is called or the exported W process
is imported by other product models as input parameters. After each time passing
of @dt units with the theta command at line 7, the process W is then incremented
by a random amount of sqrt(@dt) * randn(), where both sqrt()and randn()
are math functions.

The time interval parameter @dt in this simulation model remains to be deter-
mined. When the model BrownianMotion is called by some pricing models with
explicit time intervals, the parameter @dt then extracts the smallest of all the time
intervals from the current model time to the immediate next model time point.

P a g e | 112

Example 34:

This example illustrates the use of several ThetaML commands: fork … end, loop
inf … end, theta @dt, and @dt.

 1: model SimpleAnnuityModel
 2: % This model computes the price of an annuity with
 3: % constant interest rate ‘r’
 4: import r “Risk-free interest rate”
 5: import n “Number of years”
 6: export D “Discount process”
 7: export Annuity “Annuity value”
 8:
 9: %a fork … end block
10: fork
11: D = 1 % initialize the discount factor at 1
12: loop inf % infinite loop
13: theta @dt % theta time passing
14: D = D * exp(-@dt * r) % update the discount process
15: end
16: end
17:
18: Annuity = 0 % initialize the Annuity value at 0
19: loop n % fixed loop that loops for n times
20: theta 1 % theta time passing of 1 year
21: Annuity = Annuity + 100 * D % update the Annuity value
22: end
23:
24: end

In the model SimpleAnnuityModel, line 4 and line 5 import the constant param-
eters r and n into the model, line 6 exports the returned discount process D and
line 7 exports the computed value for Annuity.

The body of the model starts from line 10 and ends at line 22. The fork … end
code block (line 10 - line 16) runs in parallel with the loop … end code block

P a g e | 113

(line 18 - line 22), synchronized by the model time passed by the two theta
commands. It is as if the loop … end block is forked by the fork … end statement
as well.

The length of the loop loop inf … end is determined by the length of the loop loop
… end, which is n. Since the theta command synchronizes the two threads – loop
inf … end and loop … end, the time interval parameter @dt (in the infinite loop
loop inf … end) extracts the time interval passing to the next model time point.
The model time grid is determined by the theta 1 command in the fixed loop loop
… end, i.e. at each model time an Annuity of 100 is paid and discounted to the
present. At year 10, the Annuity stops. As such, model times in this example are a
set of times in years {0, 1, 2, …, 10}, regularly spaced at an interval of 1. Each year,
an event happens, i.e. a discounted cash inflow of 100 to the Annuity product.

P a g e | 114

3.13.2 The Parameter @time

This @time parameter provides the current model time. It is the sum of all previ-
ous theta time steps. The parameter @time is most often used within the infinite
loop loop inf … end.

Example 35:

 1: model DiscountFactor
 2: % This model computes a discount factor in two ways
 3: import r “Risk-free interest rate”
 4: export Discount_1 “Discount factor process 1”
 5: export Discount_2 “Discount factor process 2”
 6:
 7: Discount_1 = 1 % at time 0, initialize Discount_1 at 1
 8: Discount_2 = 1 % at time 0, initialize Discount_2 at 1
 9: loop inf % infinite loop
10: theta @dt % theta time passing at @dt time interval
11: % update Discount_1 for the time interval @dt
12: Discount_1 = Discount_1 * exp(-r * @dt)
13: % update Discount_2 for the time that has passed since
14: % time 0, this is summed by @time
15: Discount_2 = exp(-r * @time)
16: end
17:
18: end

The model DiscountFactor simulates two equivalent discount factors with con-
stant interest rate r. The parameter @dt is the time interval parameter, and @time
is the sum of all previous time steps @dt. For example, if we are at the n-th loop, @
time would be equivalent to n*@dt if the time intervals extracted by @dt are con-
stant intervals. Since the interest rate is constant throughout the model life time,
we have used the same r for different discounting time intervals.

P a g e | 115

3.14 Chapter Example

A First Application of ThetaML to Pricing Financial Derivatives

This example shows how to price an American put option in ThetaML. The Ameri-
can put option is written on a single stock price S, the option maturity is T, and the
option strike price is K. The put option is early exercisable.

The underlying stock price ‘S’ is assumed following a Geometric Brownian motion
process under the risk-neutral measure ℚ:

dSt = rSt dt + σ St dWt ,

where the term St is the stock price at time t. The growth rate r and volatility σ
of the stock price are constant parameters. The term dWt are the increments of
a standard Brownian motion process under the measure ℚ. The solution of the
above Geometric Brownian motion process is:

St = S0 e {(r - σ2/2)t + σWt } ,

where the term S0 is the initial stock price, the term Wt is a value of the standard
Brownian motion process at time t.

We discretize the stock price process for simulation as follows:

Si , j = Si , j - ∆ e {(r - σ2/2) ∆ + σ √∆ εi , j } ,

for i = 1, ..., m and j = 1, ..., n, where m is the number of Monte-Carlo paths, n is the
number of time steps used in the simulation. The discretization time step is as-
sumed constant at ∆. The term εi , j

 is the standard normal random variable sam-
pled for simulation path i at time j.

P a g e | 116

In the ThetaML code examples, the cash flows in the option are denominated in
currency ‘CUR’. The parameters for the stock price ‘S’ are set as follows: the mean
growth rate of the stock price is the same as the risk-free interest rate ‘r’ in cur-
rency ‘CUR’; the volatility of the stock price is denoted as ‘sigma’, the initial stock
price is ‘S0’.

Since the cash flows occur at future times, a discount factor should be computed to
obtain the present value of future cash flows. The discount factor in this example is
a discount process with unit initial value in currency ‘CUR’. We assume that interest
rates are constant throughout the option life time and set the constant interest rate
to ‘r’, such that the value of the discount process decays at a constant interest rate
‘r’. When the future cash flows of an asset are multiplied by the discount process
‘CUR’, it serves two purposes: first, it discounts the future cash flows to current time;
second, it translates the future cash flows into the currency unit ‘CUR’.

The ThetaML model for simulating the stock price process and discount factor
process is as follows:

 1: model S_CUR_Processes
 2: % This model simulates: stock prices ‘S’ that follow the
 3: % Geometric Brownian motion process, and a discount process
 4: % ’CUR’ for constant interest rate r in currency ‘CUR’
 5: import S0 “Initial stock price”
 6: import r “Risk-free interest rate in currency CUR”
 7: import sigma “Volatility of stock prices”
 8: export S “Simulated GBM stock prices”
 9: export CUR “Simulated discount process in currency CUR”
10:
11: fork
12: % initial stock price
13: S = S0
14: % infinite loop
15: loop inf
16: % time passing of @dt units, the value(s) of @dt are

P a g e | 117

17: % determined later when the simulated stock price
18: % process is applied in pricing financial contracts
19: theta @dt
20: % update stock prices for the time step @dt
21: S = S * exp((r - 0.5*Sigma^2) * @dt
22: + sigma * sqrt(@dt) * randn())
23:
24: end
25: end
26: % initial values of the discount factor process; set to 1
27: % in currency ‘CUR’
28: CUR = 1
29: % infinite loop
30: loop inf
31: % time passing of @dt units, the value(s) of @dt are
32: % determined later when the simulated discount factor
33: % process is applied in pricing financial contracts
34: theta @dt
35: % the value of the discount factor decays at a constant
36: % rate of r
37: CUR = CUR * exp(-r * @dt)
38: end
39:
40: end

In the model S_CUR_Processes, line 5 - line 7 import respectively the initial stock
price S0, the risk-free interest rate r, and the volatility of the stock price sigma, as
constant parameters into the model.

The body of the model starts from line 11 and ends at line 38. The stock price pro-
cess (line 13 - line 24) and the discount bond process (line 28 - line 38) are virtu-
ally paralleled processes. These two processes share the same model time axis. The
use of the fork … end statement at line 11 enables virtual parallelization of the two
processes. It is as if the second code block from line 28 to line 38 is forked by the
fork … end statement as well.

P a g e | 118

In ThetaML, process variables implicitly incorporate scenario and time indexes.
As such, the stock prices S and the discount bond CUR have both scenario and time
dimensions. Henceforth, we talk about stock prices and discount bond prices in
plural form.

The stock price S is initialized with S0 at line 13. It evolves in time through the infi-
nite loop loop inf that loops for all times and does value updates at a time interval
@dt. The length of the infinite loop is determined later in the pricing model Ameri-
can_put listed below. The model American_put imports, among others, the stock
price process S as parameter argument. In the model American_put, the imported
stock price process S synchronizes with other imported process (such as CUR) and
with the internal process V_CUR.

Inside the infinite loop loop inf, time is passed by the theta command at an inter-
val @dt. When the model S_CUR_Processes is used in the pricing application Ameri-
can_put, the @dt parameter extracts the time interval, from current model time to
the next nearest model time, passed by the theta command. In this case @dt evalu-
ates to T/n in the model American_put.

In the model S_CUR_Processes, line 21 - line 22 updates the Geometric Brown-
ian motion stock prices S for the time step @dt.

The discount factor CUR is initialized at 1 CUR at line 28. The value of CUR is then
updated at a constant interest rate r for all times (by the infinite loop) with time
step @dt. The length of the infinite loop loop inf and the value of the time step @dt
are again determined in the model American_put where the processes S and CUR
are imported as model arguments.

Having simulated the stock prices S and the discount process CUR, we next turn to
the task of pricing an American put option. The ThetaML model for an American
put option is as follows:

P a g e | 119

 1: model American_put
 2: % This model computes the price of a continuously
 3: % exercisable put option based on 52 exercise dates. This
 4: % model imports the stock price process ‘S’ and the discount
 5: % factor process ‘CUR’, both are simulated in the model
 6: % S_CUR_processes
 7: import S “Stock price process”
 8: import CUR “Discount process for the currency CUR”
 9: import K “Strike price for the American put option”
10: import T “Option maturity time”
11: export P “American put option values”
12:
13: % time 0 American put option values
14: P = V_CUR!
15: % n number of loops
16: n = 52
17: loop n
18: % conditional evaluation of American put option
19: % holding value compared with immediate exercise value,
20: % both are discounted to time 0
21: if E(V_CUR!) < (K - S) * CUR
22: V_CUR = (K - S) * CUR
23: end
24: %time passing of ‘T/n’ units in ThetaML
25: theta T/n
26: end
27: %American put option payoff at maturity time T,
28: %discounted by ‘CUR’ to time 0
29: V_CUR = max(K - S, 0) * CUR
30: end

In the example model American_put, line 7 and line 8 import respectively the
stock price process S and the discount factor process CUR that are simulated exter-
nally in the model S_CUR_Processes. Line 9 and line 10 import respectively
the option strike price K and the option maturity time T as constant parameters
into the model. Line 11 exports the time 0 American put option prices P distrib-

P a g e | 120

uted over all Monte-Carlo paths. Alternatively, We can export the option price P as
a single estimate by simply setting P = E(V_CUR!)at line 14.

In ThetaML, process variables implicitly incorporate scenario and time indexes,
the variables S, CUR and V in this model are processes with scenario and time
indexes. Processes are time stepped by the theta command. When external pro-
cesses such as S and CUR are imported into a ThetaML model, they synchronize
with the processes inside the model, i.e. all the processes step forward in time
along the same model time axis. Model time in the model American_put is spaced
at a constant interval of T/n. Model time points are j*(T/n), where j = 1, …, n (n is
the number of exercise times for the American put option). Model time points are
such determined because at each time j*(T/n), there is an event happening – we
evaluate the possibility of early exercise. The processes S, CUR and V_CUR are syn-
chronized at model time: if the variables S, CUR and V_CUR appear in the same code
statement, their respective values are evaluated at the same model time executed
at that line of code statement. If the code statement V_CUR = (K - S)*CUR is
evaluated at model time j*(T/n), this is equivalent to assign to the variable V_CUR
at model time j*(T/n), the value of K minus the values of S at model time j*(T/n),
discounted to time 0 by CUR maturing at model time j*(T/n), for all Monte-Carlo
scenarios.

Since the ThetaML model American_put is programmed in chronological order,
we go through the code statements according to the coding sequence.

At time 0 (line 14), the option prices P is set to be the same as the prices of the
variable V_CUR. The variable V_CUR is referenced by a future operator “!”. The
future operator “!” allows the values of V_CUR at a future time to be accessed. It
looks into the future times to determine the current values of V_CUR.

The process of determining the future values of V_CUR is as follows: we enter a
fixed loop of length n (line 17) with constant time interval T/n. The if … end

P a g e | 121

block at line 21 - line 23 evaluates the early exercise decisions for the American
put option; it compares pathwise the discounted holding values E(V_CUR!) with
the discounted immediate exercise values (K - S) (both are discounted to time 0)
and updates accordingly the values of V_CUR. This is equivalent to compare E(V_
CUR[i, j]!) with (K – S[i, j])*CUR[i, j], where, for illustration purposes, [i, j] denotes
the i- and j-th element of the matrices V_CUR, S and CUR. The subindex i denotes
the i-th index element of the Monte-Carlo scenarios, the subindex j denotes the
j-th index element of the discrete time grid, for i = 1, …, m and j = 1, …, n, where m
is the number of Monte-Carlo paths, n is the number of time steps. In case the if
condition evaluates to be true for the index element [i, j], the value of V_CUR[i, j] is
assigned (K – S[i, j])*CUR[i, j]; this is done for all paths and time steps where the if
condition is true. The whole evaluation and assignment process, across m Monte-
Carlo paths and along n time steps, is compactly summarized by the following
ThetaML code statements

21: if E(V_CUR!) < (K - S) * CUR
22: V_CUR = (K - S) * CUR
23: end

The theta command (line 25) passes time T/n to the next model time point. After
n loops with each loop passes by T/n time step, at the option maturity time T (n
*(T/n)), the variable V_CUR is assigned the option payoffs max(K - S, 0) * CUR
(line 29). That is, for all Monte-Carlo paths, the variable V_CUR at option matu-
rity time T is assigned the discounted put option payoffs. The put payoffs are the
maximums of 0 and the strike price K minus the stock prices S at maturity time
T. Note that the maximums are respectively taken over all the Monte-Carlo paths.
The process S and CUR are simulated up till time T in the model American_put.
This is so because the infinite loop loop inf in the process simulation model
S_CUR_Processes runs until the fixed length loop in the pricing model Ameri-
can_put stops running, which is time T. The time interval parameter @dt in the
model S_CUR_Processes takes the constant value T/n. Since T/n is the constant

P a g e | 122

time interval passed by the theta command to the next model time point, for all
model times in the model American_put.

The parameter CUR is the discount factor process simulated externally in the
model S_CUR_Processes, it serves to discount a price process when the price
process is multiplied by it. For example, the option payoffs at maturity time T is
discounted with CUR by a factor equivalent to having a discount bond at time 0
with maturity T; the values of V_CUR at time j*(T/n) are normalized with CUR to
time 0 by a discounting factor with maturity j*(T/n). The same discount factor
CUR that matures at each model time is applied to all Monte-Carlo paths, since in
this example interest rate is assumed to be constant when externally simulating
the process CUR.

Since the option payoffs are discounted by CUR (line 29), for consistent compari-
sons and compact coding, the statement (K - S) in the if condition (line 21) is
multiplied by CUR as well. Discounting to time 0 using CUR is equivalent to evalu-
ating all future cash flows in the currency CUR in present value terms.

Computationally, we go backwards in time: starting from the American put op-
tion’s final payoffs, on each exercise date, we evaluate, for all Monte-Carlo paths,
the possibility of exercise and update the discounted option values accordingly.
Thus iterate backwards to arrive at the current values for the put option.

The model American_put is programmed forward in model time and computa-
tionally evaluated backwards. This feature is realized with the future operator “!”
and the theta command.

Since the time 0 values of V_CUR are referenced by a future operator “!” (line 14).
We look into the future for the instance where the variable V_CUR is assigned some
values. This occurs at the option maturity time T, when the variable V_CUR is as-
signed the discounted put option payoffs (line 29).

P a g e | 123

Denote V_CUR [i, j] as the price of V_CUR at time j for the simulation path i, for i
= 1, …, m and j = 1, …, n, where m is the number of Monte-Carlo simulations, n is
the number of time steps. At the option maturity time T, the variable V_CUR is de-
noted as V_CUR [i, T] for simulation path i, where T = n*(T/n), and T/n is the dis-
cretization time interval. The immediate previous instance of V_CUR (i.e. V_CUR [i,
T - (T/n)]) is at line 21 and is referenced with a future operator “!”. This future
operator “!” accesses its next instances of V_CUR (i.e. V_CUR [i, T]) at line 29, so
that at line 21 V_CUR! = max(K - S,0)*CUR. At time T - (T/n), the E()function
computes the expected value of V_CUR! (equivalent to V_CUR [i, T]) conditional on
the information known at time T - (T/n).

The if condition (E(V_CUR!) < (K - S) * CUR at line 21) compares the ex-
pected discounted option holding value E(V_CUR!) with the discounted option
intrinsic value (K - S) * CUR, respectively for all Monte-Carlo paths. If the con-
dition evaluates to be true, the variable V_CUR at time T - (T/n) is assigned the
discounted option intrinsic value at time T - (T/n), the assignment is done respec-
tively for all the Monte-Carlo paths at time T - (T/n). This process is computation-
ally iterated back to time 0 to arrive at the time 0 values of V_CUR.

P a g e | 125

4 The ThetaML Type System

We shall see in this chapter how ThetaML helps

	 To define the correct type of a process or
variable and how

	 Theta Suite can automatically create an ap-
propriate GUI form for the data entry.

On the surface ThetaML looks like an untyped lan-
guage. All variables can have different types without
the need to explicitly declare their types. Internally
however, ThetaML is strictly typed. Once the code is analyzed and its execution
sequence is optimized in terms of memory and speed, all variable types are fixed.
Although the ThetaML compiler implements sophisticated type extraction algo-
rithms, sometimes it may fail to derive the desired variables types.

There are two reasons to help ThetaML with type extraction. First, the defini-
tion of imported variables allows customized widgets to show up in the ThetaML
Configurator. Second, manual type definitions are needed for external models and
functions. Because these models are defined outside the ThetaML language, their
types cannot be derived automatically. The default return type for all external
functions is a scalar value or a vector with one scalar value per Monte-Carlo path.

P a g e | 126

4.1 The Boolean Type

Boolean types are rendered as a check box in the ThetaML Configurator.

A variable is implicitly assumed Boolean if it is used in an if statement, as shown
in the following code example:

model importBooleans
 import a,b,c,d “All booleans”

 if a & (b | c)
 %do something
 end

 if d
 %do something else
 end

end

A variable can be explicitly declared Boolean with the type keyword after the im-
port statements.

model importsABoolean
 import B “Yes or No”

 type B Boolean

 %do something
end

P a g e | 127

4.2 The File Type

Files are internally treated like strings, but they behave differently in two ways.
First, the ThetaML Configurator shows file selection buttons that allow the user to
choose a file’s location, rather than enter it as text. Second, file strings can contain
paths that are relative to the Theta Suite workspace. Whenever a file location is
passed to an external model or an external function, this file string is automati-
cally converted to an absolute file path.

There are two types of files: input files and output files. For input files, a file selector is
generated that only shows existing files. Output files allow the choice of using nonex-
istent files. The output file type can only be used within the context of external mod-
els, because ThetaML itself does not provide any language features for writing files
to a file system. The following code example shows the use of file types in ThetaML.

model fileInAndOutWithCall
 import fileIn
 import fileOut
 %set file type in call
 %do something
end

model fileInAndOutExplicit
 import fileIn
 import fileOut

 type fileIn file
 type fileOut outputfile
 call @matlab : fileManipulatingModel
 export fileIn, fileOut

 %set file type explicitly for matlab function
 res = fileWriter(fileIn, fileOut)
 %do something
end

P a g e | 128

4.3 The Enum Type

Some models only have a limited number of input values. For these cases it is
often desirable to generate a selection box in the ThetaML Configurator so that
users of the model cannot enter incorrect values. They can only choose from a list
of given values.

Enum types are implicitly created in the Theta Orchestrator 11 in Theta Suite.
Inserting a ‘Switch’ with a list of named cases internally creates an Enum type with
each case name as possible value.

Enum types can also be explicitly created with the type statement. The options
are given as a list of possible values:

model someChoices
 import x “This variable can be 1,2,3, or 3.141”

 type x Enum [1, 2, 3, 3.141]

 %do something

end

11 For details see Theta Suite Help >Theta Suite User Guide > Theta Suite Components > Theta Orchestrator

P a g e | 129

4.4 Array types

In ThetaML, it is essential that array lengths are known at compile time. There-
fore the array length is part of the variable type, must be fully determined, and
can not change during model executions.

Normally, array lengths are implicitly determined through their index accesses or
definitions. These statements all specify the variable x to be an array of length 4.

 a = 1 + x[4]
 x[4] = 4
 x = [1,2,3,4]

Array types can also be explicitly defined with the type statement. Arrays of num-
bers must be specified with float as a base type, followed by the array dimension
in brackets.

model xHasLengthFour

 export x

 type x float[4]

 x = 3 %array with 4 elements, all set to 3

end

P a g e | 131

5 ThetaML Interfaces

ThetaML offers a very compact notation for sophis-
ticated financial models. However, as for all pro-
gramming languages, inappropriate use of some
ThetaML language syntax can be misleading.

ThetaML provides interfaces to ensure that certain
functionalities are within the constraints of rational
financial modeling. Interfaces can be applied to a
ThetaML model. If the model does not comply with
the constraints defined by the interface, the model
can not be executed and returns an error message
with the violated constraint. Thus, model reviews can rely on the presence of cer-
tain interfaces, without the need to check each sub_model for inappropriate use
of ThetaML language features.

P a g e | 132

5.1 Interface Syntax

The ThetaML interface is defined similar to a model, starting with the interface
keyword. The interface contains sections for obligatory variables and constraints
for inputs and language features.

The ThetaML interface has the following structure:

interface exampleFace
%impose some constraints
end

A model that complies with the interface must indicate compliance with the im-
plements keyword. The compliant model is sometimes also called implementing
model.

model compliantModel implements exampleFace

%model content
end

P a g e | 133

A single interface can be applied to multiple implementing models sharing the
same import argument(s):

% the interface Itest imposes a constraint on S0 which
% is imported in the implementing models stock1 and stock2

interface Itest
 import S0 “Initial stock price”

 % impose constraint on the initial stock price
 assert(S0 > 0, ‘Initial stock price must be greater than 0’)
end

model stock1 implements ITest
 import S0 “Initial stock price”
 import mu1 “Drift of stock price”
 import sigma1 “Volatility of stock price”

 % model content
end

model stock2 implements ITest
 import S0 “Initial stock price”
 import mu2 “Drift of stock price”
 import sigma2 “Volatility of stock price”

 % model content
end

P a g e | 134

Interfaces can also be extended with additional constraints by applying an inter-
face to an interface. Again the implements keyword is used:

interface IStricter implements ITest
% impose additional constraints upon the existing
% interface ITest

end

The following example illustrates how to use interface in ThetaML:

Example 36:

 1: interface ITestInterface
 2: % This interface applies to the implementing model GBM
 3: import r “Risk-free interest rate”
 4: %impose a constraint on interest rate r
 5: assert(r > 0, ‘Interest Rate r must be greater than 0’)
 6:
 7: end

 1: model GBM implements ITestInterface
 2: % This model simulates stock prices following a Geometric
 3: % Brownian Motion process
 4: import S0 “Initial stock price”
 5: import r “Risk-free interest rate”
 6: import sigma “Volatility of stock price”
 7: export St “Simulated stock Prices”
 8:
 9: St = S0 % initial stock price at S0
10: dt = 1/12 % discretization time interval
11:
12: loop 12 % the loop runs 12 times
13: theta dt % time passing of dt = 1/12
14: % update the GBM stock price for the time step dt
15: St = St * exp((r - 0.5 * sigma^2) * dt

P a g e | 135

16: + sigma * sqrt(dt) * randn())
17: end
18:
19: end

The interface ITestInterface imposes a constraint on the interest rate param-
eter r used in the model GBM. The constraint is imposed using the ThetaML key-
word assert (line 5). The assert statement takes as first argument the condition
that must be satisfied by the respective parameter(s), followed by a comma, then
a string12 that shows up as error message13 in the ThetaML Configurator when the
constraints are violated.

The model GBM indicates compliance with the interface ITestInterface using
the keyword implements. GBM is a ThetaML model for simulating the discretized
Geometric Brownian Motion (GBM) process of stock prices. The stock price pro-
cess St starts at S0 (line 9), the discretization time interval is a constant dt equal
to 1/12 (line 10). The command theta dt (line 13) passes time to the next discret-
ization time point. The St process is updated 12 times at a constant time interval
1/12. Line 15 - 16 call three math functions exp, sqrt and randn(). The resulting
simulated stock prices are exported at line 7. Note that the variable St is a process
variable with implicit scenario index and time index.

12 String is a ThetaML internal type.
13 The error message can be found in the text box under the "Info" section in the Thet-
aML Configurator.

P a g e | 136

5.2 Interface Import and Export Statements

ThetaML interfaces may contain import and export statements. Variables listed
there must be imported and exported by every implementing model. The inter-
face can thereby guarantee the presence of certain variables and accidental re-
naming can be avoided. Furthermore, variables in the interface can be provided
with a default comment for the implementing model, as the following example
shows:

interface ImustExport
 % the exported variable S also adds a default comment for the
 % variable S in the implementing model ‘modelS’
 export S “The stock price of XXX”

 % impose constraints for the exported variable S, note the
 % constraints on S are checked after the model modelS is run

end

model modelS implements ImustExport
 % import statements …
 export S

 % process statements

end

P a g e | 137

5.3 Language Constraints

Language constraints can be applied to models, including all sub_models. If a mod-
el with language constraint(s) calls another model which uses that language fea-
ture but does not itself implement that constraint, an error marker is shown for
the calling operation. No error is shown for the called model.

The following language constraints can be applied to ThetaML. All constraints are
case insensitive.

@notheta: This model can not pass model time using the theta command. All
computations must be done based on the present value of state variables. It can
not have any process dependency.

@noBackward: No use of the future operator “!”. Access to the future value(s) of a
variable and reverse execution order is forbidden.

@noRegression: No use of the expected values E() and the betas Beta(). Because
these operators have an implicit access to the future values of variables, this con-
straint is automatically active if @noBackward is included in the constraints.

@noExternalFunction: Calls to external functions, such as those defined in Mat-
lab, are forbidden. All functionalities must be defined in ThetaML. This constraint
ensures portability of the ThetaML model to other numerical backends.

@noExternalModule: Calls to external models are forbidden. This constraint is au-
tomatically active, if @noExternalFunction is active. Models are invoked with the
call @backend:ModelName. Unlike functions, models can also import and export
time dependent processes.

P a g e | 138

@noInfLoop: The use of loop inf is restricted. The infinite loop construct allows
the creation of stochastic processes that are simulated as long as needed. The use
of this construct is inappropriate in product- or contract-specific models.

@noFork: Forbids the fork keyword. It is important to point out that calls to sub_
models implicitly create a fork. i.e., the sub_model bodies are executed in parallel
(in model time) with the calling model. Calls clearly separate variable spaces and
are hence easier to handle than forks. Forks are helpful for small and experimen-
tal models, but should not be used in complex projects.

An example for an interface activating all available constraints can look like this:

interface IConstrainAll
 @notheta
 @noExternalFunction
 @noBackward
 @noExternalModule
 @noFork
 @noInfLoop
end

P a g e | 139

5.4 Value Assertions

Another type of constraint can apply to input parameters. These constraints do
not concern the ThetaML model, but the input parameters defined in the Thet-
aML Configurator. If any of these assertions are violated, the errors are shown in
the configuration, not in the model.

Value assertions are specified in the interface with the assert statement. An
assertion has two arguments. The first is a boolean expression that evaluates
whether the constraint is valid. The second optional argument is a human read-
able error message that is shown in the configuration page if the assertion fails.

An example for using the assert statement in a ThetaML interface looks like this:

interface IAssertRanges
 import sigma, rho
 % use ‘assert’ to impose the constraints for the input
 % parameters

 % the input parameter ‘sigma’ must be bigger than 0
 assert(sigma > 0, ‘Sigma must be positive’)

 % the input parameter ‘rho’ must lie between -1 and 1
 assert(rho >= -1 && rho <= 1, ‘Correlation must be between
 -1 and 1’)

end

P a g e | 141

6	 Workflows

Workflows in ThetaML are very similar to the mod-
els we saw in the previous chapters. They allow
automation of recurring tasks, especially the defi-
nition of data pre- and post-processing. Typical ap-
plications of workflows are in defining iterations
over the starting values of a given pricing task.
Workflows can also define sources from which in-
put data are read or result files that should be writ-
ten to. Thus, workflows provide the capabilities one
would expect from a normal scripting language,
without support for ThetaML simulation specific
features such as computing expected values (the E function), future access using
the future operator “!”, or scenario-wise executions.

Workflows look very similar to ThetaML simulation models14. However, they
are evaluated differently from the compilation and optimization method used in
evaluating ThetaML simulation models. Workflows are evaluated step-by-step ac-
cording to the order of program flow, and they allow much more flexibility when
it comes to complex data types. Moreover, workflows can take full advantage of
the infrastructure integrated into Theta Suite. This includes automatic generation
of graphical user interfaces, automatic extraction of data types, and editing sup-
port with instantaneous error indicators.

14 Simulation models here refer generally to models defined using the keyword model.

P a g e | 142

6.1	 Workflow	Definitions

Workflows are introduced with the keyword workflow followed by the workflow
name:

workflow <WorkflowName>
 ...
end

Workflows can import and export variables similar to ThetaML simulation mod-
els:

workflow testFlow
 import X “comment for X”
 import Y “comment for Y”
 export report “Result object contains all interesting stuff”

 ...

end

P a g e | 143

Workflow variables can have the input data types listed in Table 3. Wherever pos-
sible, these types are automatically extracted from the workflow source with the
usual type extraction method15 in ThetaML. Workflows are dynamically typed.
Type definitions are only relevant for the user interface, where custom widgets
are shown.

Data Type Widgets
Boolean Check box
Enum Selection box
File File Chooser for existing files
Outputfile File Chooser for existent and non-existent files
Float/String/Array Text field for free form formulas

 Table 3. Input data types defined in workflows.
Column 1 lists the input data types in workflows. Column 2 gives a short description of the data
types in the form of widgets that appear in ThetaML Configurator.

15 For more on data extractions in ThetaML, please see section 1 of Chapter 3.

P a g e | 144

6.2	 Workflow	Statements

Workflows allow the same set of statements as ThetaML simulation models, ex-
cept that workflows do not support the theta and fork statements. Workflows
do not maintain their own model time. The statements in workflows are always
executed in the order they are defined.

P a g e | 145

6.3	 Assignments	in	Workflows

Assignments are definitions of variables. They can operate on variables, their
subfields, and array components. The right hand side of an assignment can be
any value or formula:

% assign ‘X’ some values
X = ...

% assign something to ‘field2’ of the object ‘X’;
% ’field2’ is a subfield of ‘field1’; ‘field1’ is a field
% of the object ‘X’
X.field1.field2 = ...

% assign something to the ‘index’ element of the array ‘field2’;
% ‘field2’ is a subfield of the 3rd index element of the
% array ‘field1’; ’field1’ is a field of the object ‘X’
X.field1[3].field2[index] = ...

P a g e | 146

6.4	 Loops	in	Workflows

Loops share their semantics with ThetaML simulation models. They can be defined
by following the loop keyword with either a fixed number or an array with values.
Compared to ThetaML simulation models, infinite loops (loop inf) are forbidden.

A fixed loop example:

 loop 10
 % do this ten times
 end

Array loops with indexOf() are possible:

 % x serves as an iterator for the ‘Array’
 loop x : Array
 % loop through each element in ‘Array’

 % optional using indexOf()
 index = indexOf(x)
 end

Loop results can be put into an object and exported:

% export the ‘report’ object
export report
% define the ‘ShiftArray’
ShiftArray = [-0.5, -0.1, 0, 0.1, 0.5]
% loop through the elements of the array ‘ShiftArray’
% ’shift’ serves as an iterator for the array ‘ShiftArray’
loop shift : ShiftArray
 % during the looping process, store in the field ‘shifted’
 % of the object ‘report’ the assigned values;
 % the compiler automatically detects ‘report’
 % is of type object
 report.shifted[indexof(shift)] = ...
end

P a g e | 147

6.5	 Conditional	Executions	in	Workflows

Workflows use the same conditional evaluation statements as ThetaML simula-
tion models:

 if <condition>
 % do if the ‘condition’ is true
 else
 % do if the ‘condition’ is false
 end

P a g e | 148

6.6	 Sub	Workflows

Workflows can call each other using the syntax for calling sub_models in simula-
tion models:

 %call sub workflow ‘subworkflow’
 call subworkflow
 % export the ‘param’ field of the object ‘context’ defined
 % in the calling workflow to the ‘param’ argument in the
 % called ’subworkflow’
 export context.param to param
 % import in the ‘case_1’ field of the object ‘report’ defined
 % in the calling workflow from the ‘report’ argument in the
 % called ’subworkflow’
 import report.case_1 from report

P a g e | 149

6.7 Functions

Workflows support all functions defined in ThetaML simulation models, except
the expected value function (E), the beta function (Beta) and the future operator
(“!”).

Below we give a list of some supported operators and functions in workflows:

- Arithmetic operators: +, -, /, *, ^
- Logical operators: ~, &&, ||
- Array operators: x[5], [1,2,3], [1:2:50],[1:10], length(), ...
- Mathematical functions: max, min, log, exp, sqrt, sin, cos, atan, ...

Additionally workflows have access to file operations. The following are two
workflow commands that operate on files:

load: this command load a .thetaml file, such as a pricing configuration file
run: this command runs the pricing configuration file

P a g e | 150

The following is a simple workflow example:

workflow simpleWorkflow
 import testFile “Configuration file: testFile”
 import shift “Shift level for initial parameters”
 export result “Export the results”

 % load the ThetaML configuration file ‘testFile’
 conf = load(testFile)

 % change the parameter value by ‘shift’;
 % ’param’ is a field defined in the variable object ‘conf’
 % ’value’ is a subfield of the field ‘param’
 conf.param.value = conf.param.value + shift

 %return the results ran in the object ‘result’
 result = run(conf)
end

P a g e | 151

6.8 External Namespaces

Workflows can make use of all the functionalities that are available from the Thet-
aML Configurator. That includes the ThetaML @today parameter, functions follow-
ing the @matlab call command, and the @ql QuantLib namespace. If some custom-
ized extensions are added to Theta Suite, they are also accessible by workflows.

The compiler does not assume that results in workflows from the external func-
tions are numerical arrays or associated with scenario indices. All return types
(structs, arrays, objects, and so on) are therefore allowed in workflows.

Obviously Matlab actions can be triggered, such as storing data to disk, convert-
ing to Excel, or opening dialogs. Matlab statements that make modifications to the
Matlab workspace can have unexpected impact on the running workflows. They
may work, but are not universally supported.

P a g e | 153

7 ThetaML Language by Example

The two tutorials in this chapter serve as a guide to
implement your first financial model:

	 The Tutorial “From European to American”
shows how to model classical equity op-
tions, starting from a simple European op-
tion up to a more complex Compound op-
tion with early exercise features.

	 The Tutorial “Hedging in ThetaML” pres-
ents different ways for option hedging. The
hedging strategies go from simple delta hedging to more efficient hedging
with our Beta function.

P a g e | 154

7.1 Tutorial From European to American

This tutorial applies the ThetaML Language in the area of pricing financial derivatives.

ThetaML presents the definition of complex financial derivatives with unprece-
dented simplicity. This is demonstrated by the following examples.

To start with, we implement in ThetaML a simple European option, then show
how easy it is to add additional features – such as Bermudan and American exer-
cise features, or to change the underlying to another option, such as a compound
option.

7.1.1 The Stochastic Process

To price an option, we first define a stochastic process for the underlying. As there
might be thousands of scenarios for the future values of the underlying, good
modeling language and powerful simulation engine are essential for estimating
accurate future values. This is where ThetaML comes into play.

For the simple purpose of this tutorial, we use the stock price process S and the
discount factor process CUR simulated in the model S_CUR_Processes in the Chap-
ter Example of Chapter 3. The stock price parameter S follows a Geometric Brown-
ian motion process under the risk-neutral measure, the discount factor process
CUR is discounted at a constant interest rate r.

In terms of naming conventions in ThetaML models, we use in general the suffix _CUR
for variables that are discounted to time 0 by the discount factors CUR. For example,
in the code statement V_CUR = max(K - S, 0) * CUR, the variable V_CUR has suffix
_CUR, because its right hand side values are discounted by CUR to time 0. By discount-
ing to time 0, we always talk about future cash flows in present value terms.

P a g e | 155

With the simulated S and CUR processes, we now turn to the task of pricing a Eu-
ropean option in ThetaML.

7.1.2 European Option

This little example shows how to price a European option in ThetaML.

 1: model EuropeanPut
 2: % This model returns a simulated European put option price
 3: import S “Stock prices”
 4: import CUR “Discount factors”
 5: import K “Strike price for the European put option”
 6: import T “Time to maturity in years”
 7: export P “European put option price”
 8:
 9: % time 0 European put option price, E(V_CUR!) = E(V_CUR)
10: P = E(V_CUR!)
11: % T years pass
12: theta T
13: % at maturity T, the option payoff is discounted to time 0
14: V_CUR = max(K - S, 0) * CUR
15:
16: end

In the model EuropeanPut, the import block (line 3 - 6) defines the variables
that must be imported as model arguments, among which, the stock prices S and
discount factors CUR are externally simulated processes. When external processes
are imported into the model, they automatically synchronize in model time with
the processes in current model. As such, S and CUR take their respective values
at the corresponding model time. For example, S and CUR at line 14 take their
respective values at maturity time T.

The exported variable P (line 7) is the option price returned by the model.

P a g e | 156

Following the import and export block, the body of the model consists of three
statements.

At time 0, the option price P is defined as the expected value of the discounted fu-
ture payoffs V_CUR! conditional on the time 0 information (line 10). The variable
V_CUR at line 10 is referenced with the future operator “!”. The future operator
“!” acts like a function on V_CUR, which means we wait to determine its values till
a later instance when V_CUR is explicitly assigned some values.

At line 12, the theta command advances model time by T years.

Then we reach maturity time T, and the variable V_CUR is assigned the discount-
ed option payoffs (line 14). The option payoffs V_CUR at line 14 are discounted to
time 0 by the discount factors CUR that mature at time T, as such future cash flows
are represented in present value terms.

The variables S, CUR and V_CUR are process variables with implicit scenario and
time indexes, as such we always talk about their values in plural forms.

P a g e | 157

7.1.3 Bermudean Option

We now extend the European option with an additional feature. Suppose that half
the maturity time has passed and we decide to exercise the option early. Let us
adjust our model to reflect this new feature.

 1: model BermudanPut
 2: % This model returns a simulated Bermudan put option price
 3: import S “Stock prices”
 4: import CUR “Discount factors”
 5: import K “Strike price for Bermudan put option”
 6: import T “Time to maturity in years”
 7: export P “Bermudan put option price”
 8:
 9: % time 0 Bermudan put option price
10: P = E(V_CUR!)
11: % T/2 years pass
12: theta T/2
13: % early exercise evaluation, compare expected discounted
14: % option hold value with discounted option intrinsic value
15: if E(V_CUR!) < (K - S)* CUR
16: V_CUR = (K - S)* CUR
17: end
18: % another T/2 years pass
19: theta T/2
20: % at maturity T, V_CUR has the discounted put payoffs
21: V_CUR = max(K - S, 0)* CUR
22:
23: end

The model BermudanPut imports two external processes: the stock prices S and
the discount factors CUR. The two processes S and CUR automatically synchronize
in model time with other processes in current model. As such, S and CUR take their
respective values at the corresponding model time. For example, S and CUR at line
15 take their respective values at time T/2. At line 21 they take their respective
values at option maturity time T.

P a g e | 158

In the model BermudanPut, initially we define the option price P as the expected
discounted future values of V_CUR! (line 10), and wait for a time period of T/2
(line 12). We then compare the expected discounted option hold values E(V_
CUR!) with the discounted option intrinsic values (K - S) * CUR (line 15). If the
if condition at line 15 turns out to be true, we assign the new values to V_CUR
(line 16). We then wait another T/2 years (theta T/2 at line 19) and assign the
discounted payoff values to V_CUR at the option’s maturity time T (line 21). The
variables S, CUR and V_CUR are process variables with implicit scenario and time
indexes, as such we write their values in plural form.

Note that the compiled codes will record the commands into a computational or-
der. This forces the final assignment of V_CUR to be evaluated first. The result is
then overwritten by optimized option values when stepping backwards in time.

P a g e | 159

7.1.4 American Option

An American option goes even further than the Bermudan option in that it can be
exercised continuously. To implement this in ThetaML, we formulate a Bermudan
approximate with finite step size between possible exercise times. The following
ThetaML model implements such an approximation with daily exercise intervals,
assuming 252 trading days per year.

 1: model AmericanPut
 2: % This model returns a simulated American put option price
 3: import S “Stock prices”
 4: import CUR “Discount factors”
 5: import K “Strike price for American put option”
 6: import T “Time to maturity in years”
 7: export P “American put option price”
 8:
 9: % time 0 American put option price
10: P = E(V_CUR!)
11: % loop T*252 times, T*252 rounded down to
12: % the nearest integer
13: loop T*252
14: % early exercise evaluation
15: if E(V_CUR!) < (K - S)* CUR
16: V_CUR = (K - S)* CUR
17: end
18: % 1 trading day passes
19: theta 1/252
20: end
21: % at time T, the option payoff is discounted to time 0
22: V_CUR = max(K - S, 0)* CUR
23:
24: end

In the model AmericanPut, at time 0, we define the option price P as the expected
discounted future values of V_CUR! (line 10). With time passing (theta 1/252),
on each exercise date, we compare the expected discounted values of continu-

P a g e | 160

ation E(V_CUR!)with the discounted option intrinsic values (K - S)*CUR (line
15). If the latter turns out favorably, we assign the new values to V_CUR (line 16).
After T*252 days, we assign the discounted payoff values to V_CUR at the option’s
maturity time (line 22). We discount the process variable V_CUR and the option
intrinsic values (K - S) to time 0 so that future cash flows are always seen in
present value terms.

The model AmericanPut imports two external processes: the stock prices S and
the discount factors CUR. The two processes S and CUR automatically synchronize
in model time with processes in current model. As such, S and CUR take their re-
spective values at the corresponding model times. For example, S and CUR at line
15 take their respective values at the model time executed at that line of code. At
line 22 they take their respective values at option maturity time T. The variables
S, CUR and V_CUR are process variables with implicit scenario and time indexes,
their values are therefore written in plural form.

Computationally, we go backwards in time: starting from the American put op-
tion’s final payoffs, on each exercise date, we evaluate the possibility of early ex-
ercise and update the discounted option values accordingly. Thus iterating back-
wards to arrive the current put option price.

P a g e | 161

7.1.5 Compound Option

The compound option is an option on an option. Let us assume the outer option
is a European call option and the inner option is an American put option, i.e. a
European call written on an American put.

Based on the above ThetaML models for European and American options, our
model for the compound option is implemented as follows:

 1: model CompoundOption
 2: %This model simulate prices a Compound option
 3: import S “Stock prices”
 4: import CUR “Discount factors”
 5: import K1 “Strike price for the outer option”
 6: import K2 “Strike price for the inner option”
 7: import T1 “Time to maturity of the outer option”
 8: import T2 “Time to maturity of the inner option”
 9: export P “Compound option price”
10:
11: % time 0 compound option price
12: P = E(V_CUR!)
13: % T1 time passes
14: theta T1
15: % outer European call option payoffs
16: if E(V_CUR!)- K1 * CUR > 0
17: % if the payoffs have positive values, V_CUR at time
18: % T1 is assigned (V_CUR! – K1*CUR); at time T1,
19: % the values of V_CUR! remain to be determined
20: V_CUR = V_CUR! - K1 * CUR
21: else
22: V_CUR = 0
23: end
24:
25: % inner American put option
26: loop (T2-T1)*252
27: %early exercise evaluation

P a g e | 162

28: if E(V_CUR!) < (K2 - S) * CUR
29: V_CUR = (K2 - S) * CUR
30: end
31: % time passing of 1 trading day
32: theta 1/252
33: end
34: % at time T2, inner option payoff discounted to time 0
35: V_CUR = max(K2 - S, 0) * CUR
36:
37: end

In the model CompoundOption, we import two strike prices K1 and K2 as well as
two maturity times T1 and T2 respectively for the outer and inner options. We
export the computed compound option price in the variable P.

The model CompoundOption imports also two external processes: the stock price S
and the discount factors CUR. The two processes S and CUR automatically synchro-
nize in model time with processes in current model. As such, S and CUR take their
respective values at the corresponding model time. For example, S and CUR at line
28 take their respective values at the model time executed at that line of code. At
line 35 they take their respective values at time T2.

Initially, the compound option price P is set to the expected discounted future val-
ues of V_CUR! (line 12). The future values of V_CUR are determined as what follows.

At time T1, we reach the maturity of the outer European call option. The outer
European call payoffs depend on the values of the inner American put option at
T1. Instead of using the single line of code V_CUR = max(E(V_CUR!)- K1 * CUR,
0)for the outer European call payoffs, we code the payoffs as in line 16 - line 23,
which is a separate statement version for V_CUR = max(E(V_CUR!)- K1 * CUR,
0) but numerically more efficient.

Assuming 252 possible exercise dates (line 26) for the inner American put, on
each exercise date starting from T1, we compare the expected discounted Ameri-

P a g e | 163

can put holding values with its discounted intrinsic values and assign the updated
values to V_CUR (line 28 - line 30). After (T2-T1)*252 days, we reach the ma-
turity of the inner American put, and assign the discounted American put payoffs
to V_CUR (line 35).

The discount factors CUR discounts the process variable V_CUR and the statement
(K2 - S) to time 0. By discounting to time 0, we always talk about future cash
flows in present value terms. The variables S, CUR and V_CUR are process variables
with implicit scenario and time indexes.

The compiler records the commands into a computational order, i.e. iterate back-
wards in time. Starting from the inner American put option’s final payoffs, on each
exercise date, we evaluate the possibility of exercise and update the discounted
option values accordingly. Thus iterating backwards, at the outer European call
option maturity T1, we already know the estimated inner American put option
values at T1; as such, the outer European call option is easily valued like a vanilla
European call.

P a g e | 164

7.1.6 Hedged American Option

With the above setting as our background, it is easy to introduce variance optimal
hedge. The ThetaML command Beta(S,V) computes the optimal fraction of S that
minimizes the variance of a portfolio with one option V and Beta(S,V)number of
asset with price S.

Our model for the hedged American option is implemented as follows:

 1: model Hedged_American
 2: % This model beta hedges the American put option
 3: import S “Stock prices”
 4: import CUR “Discount factors”
 5: import K “Strike price for American put option”
 6: import T “Time to maturity in years”
 7: export P “Hedged American put option price”
 8: export V_CUR “Process of option hedge”
 9:
10: % time 0 American put option price
11: P = E(V_CUR!)
12: % loop T*252 times, assuming 252 trading days in a year
13: loop T*252
14: % using the Beta function to provide a better hedge
15: % for the price process V_CUR, note
16: % Beta(S!*CUR!, V_CUR!) = Beta(S*CUR, V_CUR)
17: V_CUR = V_CUR! - Beta(S!*CUR!,V_CUR!)*(S!*CUR! - S*CUR)
18: %time passing of 1 trading day
19: theta 1/252
20: %early exercise evaluation
21: if E(V_CUR!) < (K - S)* CUR
22: V_CUR = (K - S)* CUR
23: end
24:
25: end
26: % the time T American put payoffs are discounted to time 0
27: V_CUR = max(K - S, 0)* CUR
28:
29: end

P a g e | 165

In the model Hedged_American, we import the stock prices S and the discount
factors CUR simulated externally. The two processes S and CUR automatically syn-
chronize in model time with processes in current model. As such, S and CUR take
their respective values at the corresponding model time. For example, S and CUR
at line 21 take their respective values at the model time executed at that line of
code. At line 27 they take their respective values at option maturity time T.

At time 0 we assign to P the expected discounted future values of the hedged
American put option V_CUR! (line 11). The hedged option process V_CUR mini-
mizes the variance of the hedge by investing Beta(S!*CUR!,V_CUR!) amount in
the stock S (line 17). The function Beta(S!*CUR!,V_CUR!) computes the beta fac-
tor for its two arguments, where S!*CUR! is the explanatory variable and V_CUR!
is the dependent variable. Assuming we are now at time t, the Beta(S!*CUR!,V_CUR!)
function estimates the relationship between S!*CUR! and V_CUR! conditional on
the information at time t, where S!, CUR! and V_CUR! take respectively the val-
ues of S, CUR and V_CUR at the immediate next model time. On each exercise date,
we compare the expected discounted holding values of the American put option
with its discounted intrinsic values and update accordingly the discounted option
values (line 21 - line 23). At the option maturity time T, V_CUR is assigned the
discounted American put payoffs (line 27). We discount to time 0 the processes
V_CUR and S as well as the expression(K - S)so that future cash flows are always
seen in present value terms.

The variables S, CUR and V_CUR are process variables with implicit scenario and
time indexes, and their values are in plural form.

This completes the introductory tutorial “From European to American”.

P a g e | 166

7.2 Tutorial Hedging in ThetaML

7.2.1 Introduction

This tutorial introduces a variety of hedging techniques in ThetaML. As a byprod-
uct, it also illustrates the simplicity and flexibility of using ThetaML for fast and
accurate simulations.

To start with, we compute, in ThetaML, the very familiar Black-Scholes delta, then
use this Black-Scholes delta to simulate hedge European put option - stepping
both forward and backward in time. In the end, we compare the hedged portfolio
value with the exact European put price. Our first results produce the same Euro-
pean put price for forward and backward hedges, with a standard error of 0.84
in both cases.

Next, we present our unique Beta function and illustrate by examples its wide
applicability and flexibility in more advanced hedge settings. We start with the
more familiar variance minimal hedge - for single and multiple underlyings and
for single- and multi-dimensional stochastic processes. We then proceed to apply
our Beta function to static and dynamic portfolio hedging. Finally, our Beta func-
tion is applied in the real world hedging with transaction costs, demonstrated
by code examples for portfolio rebalancing at constant intervals and for position
changes above a certain barrier level.

In terms of naming conventions in the example ThetaML models, we use the suf-
fix _CUR for variables that are discounted to time 0 using the discount factors CUR.
For example, in the code statement V_CUR = max(K - S, 0) * CUR, the variable
V_CUR has suffix _CUR, because its right hand side values are discounted by CUR to
time 0. By discounting to time 0, we always talk about future cash flows in present
value terms.

P a g e | 167

To proceed with presenting various hedging methods, we set up a hedge portfolio Π as

Π = V + d * S

with an option V and a position of d in the hedge instrument S. The task of the
hedging procedure is to choose d such that the portfolio Π does not change much
even if the underlying S changes.

7.2.2 Delta Hedging

We start with a simple example where the process S is driven by a Geometric
Brownian motion process with a drift equal to the risk-free rate r and volatility σ.
This allows us to use the Black-Scholes-Merton equation to obtain a representa-
tion for d. The choice and use of d to hedge portfolio risk is called delta hedging.

The delta-hedge pricing method offsets the portfolio risk in such that it can be made
completely risk free in the basic Black-Scholes economy. This is unrealistic in the real
world, mainly because the hedge must be rebalanced continuously in time whereas
a real trader can only buy and sell at discrete times. In this section, we will compute
and analyze the errors that occur when using discrete instead of continuous hedges.

We use European put option as an example. The formula for European put option
delta is known as

d = ∂V—∂S = N�log �S―K�+�r + σ2�‒2 T——————————
σ√T

 � - 1

where N () is the cumulative standard normal distribution, and the term
∂V—∂S re-

fers to the partial derivative of V with respect to S.

P a g e | 168

With this formula and the convenience that ThetaML can call any regular Matlab
functions, it is very easy to obtain the delta of a European put option in ThetaML
as what follows.

For consistency, all subsequent code examples use the following assumptions and
parameter values:

	Stochastic model for the stock price: Geometric Brownian Motion
	Volatility of the stock price : 0.4 (40% p.a.)
	Risk-free interest rate : 0.05 (5% p.a.)
	Current stock price : 100
	Initial discount factor value CUR: 1
	Strike price of the option : 100
	Maturity time : 1

P a g e | 169

The following code example is a ThetaML model for computing Black-Scholes
delta.

 1: model BlackScholesDelta
 2: % This model returns the Black-Scholes hedge delta for a
 3: % European put option
 4: import S “Current stock price”
 5: import K “Strike price for the European put option”
 6: import sigma “Volatility of the underlying stock”
 7: import r “Risk-free interest rate”
 8: import T “Time to maturity”
 9: export delta “Black-Scholes delta”
10:
11: if T <= 0
12: if S < K
13: delta = 1;
14: else
15: delta = 0;
16: end
17: else
18: d1 = (log(S/K) + (r+(sigma^2)/2)*T) / (sigma*sqrt(T));
19: delta = normcdf(d1,0,1) - 1;
20: end
21:
22: end

In the model BlackScholesDelta, line 18 uses two mathematical functions log
and sqrt. Line 19 calls a Matlab function normcdf to compute values of the cu-
mulative standard normal distribution.

Having computed the Black-Scholes delta in ThetaML, we proceed to use this
analytical delta to simulate hedge portfolio values and compare the hedge error
between the hedging portfolio and the option value. This is illustrated by the fol-
lowing code examples and hedge error histograms.

P a g e | 170

The following code example is a ThetaML model for simulating hedging portfolio
values forward in time, using the Black-Scholes delta as the hedge strategy for the
underlying hedge instrument. It also computes the hedging error based on the
analytical Black-Scholes option delta.

 1: model DeltaHedge_Forwards
 2: % This model simulates forward in time the delta hedge of a
 3: % European put option
 4: import S “Stock prices”
 5: import CUR “Discount factors”
 6: import sigma “Volatility of the stock price”
 7: import r “Risk-free interest rate”
 8: import K “Strike price for the European put option”
 9: export Pi_CUR “Hedging portfolio value”
10: export delta “Black-Scholes hedge delta”
11: export error “Hedging error”
12:
13: T = 1 % time to maturity of the option
14: n = 252*T % loop length
15: % Pi_CUR has the same expected value as V_CUR at time 0
16: Pi_CUR = E(V_CUR!)
17:
18: loop n
19: % obtain the Black Scholes delta
20: call BlackScholesDelta
21: export K, sigma, r, S
22: % @time has passed, the maturity is now T - @time
23: export T - @time to T
24: import delta
25: % update the previous stock price S_old
26: S_old = S
27: % update the previous discount factor CUR_old
28: CUR_old = CUR
29: % T/n time interval passes
30: theta T/n
31: % update the hedging portfolio by delta amount of S
32: Pi_CUR = Pi_CUR + delta * (S*CUR - S_old*CUR_old)

P a g e | 171

33: end
34: % option payoffs discounted to time 0
35: V_CUR = max(K - S,0) * CUR
36: % hedging error
37: error = Pi_CUR – V_CUR
38:
39: end

In the model DeltaHedge_Forwards, the European put option maturity T is set to
1 year (line 13), each year is assumed to have 252 trading days (line 14).

The model DeltaHedge_Forwards imports the stock prices S and the discount
factors CUR simulated externally in the model S_CUR_Processes in the Chapter
Example of Chapter 3. The two processes S and CUR automatically synchronize in
model time with processes in current model. As such, S and CUR take their respec-
tive values at the corresponding model time. For example, S and CUR at line 26
and line 28 take their respective values at the model time executed respectively
at that line of code. At line 35 they take their respective values at option maturity
time T.

We initially set up the hedge portfolio Pi_CUR to have the same expected discount-
ed value as the European put option V_CUR (line 16). With time passing at constant
T/n intervals (theta T/n at line 30), we optimally hedge the portfolio Pi_CUR us-
ing the Black-Scholes delta as the position taken in the underlying stock S (line
32). This strategy is updated each time step T/n. At the option’s maturity T (line
35), V_CUR is assigned the discounted option payoffs. Line 37 computes the hedg-
ing errors between the hedging portfolio values and the option values at option
maturity T.

We discount to time 0 the processes V_CUR and S so that future cash flows are
always seen in present value terms. The variables S, CUR and V_CUR are process
variables with implicit scenario and time indexes, their values are therefore writ-
ten in plural form.

P a g e | 172

The following graph is the histogram of hedge error distribution for delta hedging
the European put option with forward simulation. The exact value of the Euro-
pean put is 13.15 with a standard deviation of 0.84 for the hedge error.

P a g e | 173

The following code example is a ThetaML model for simulating hedge portfolio
values backward in time, using Black-Scholes delta as the hedge strategy for the
underlying hedge instrument .

 1: model DeltaHedge_Backwards
 2: % This model simulates backward in time the delta hedge of a
 3: % European put option
 4: import S “Stock prices”
 5: import CUR “Discount factors”
 6: import sigma “Volatility of the stock price”
 7: import r “Risk-free interest rate”
 8: import K “Strike price for the European put option”
 9: export Pi_CUR “Hedging portfolio value”
10: export error “Hedging error”
11:
12: T = 1 %time to maturity of the European put option
13: n = 252*T %loop length
14: error = Pi_CUR! - E(V_CUR!) %hedging error
15:
16: loop n
17: % obtain the Black Scholes delta
18: call BlackScholesDelta
19: export K, sigma, r
20: export S to S
21: export T - @time to T
22: import delta
23: % update the hedging portfolio
24: Pi_CUR = Pi_CUR! – delta * (S!*CUR! - S*CUR)
25: theta T/n
26: end
27: % the hedging portfolio has the same value as V_CUR
28: Pi_CUR = V_CUR!
29: % at maturity T, option payoff is discounted to time 0
30: V_CUR = max(K - S,0) * CUR
31:
32: end

In the model DeltaHedge_Backwards, the European put option maturity T is set
to 1 year (line 12), each year is assumed to have 252 trading days (line 13).

P a g e | 174

The model DeltaHedge_Backwards imports the stock prices S and the discount
factors CUR simulated externally in the model S_CUR_Processes in the Chapter
Example of Chapter 3. The two processes S and CUR automatically synchronize in
model time with processes in current model. As such, S and CUR take their respec-
tive values at the corresponding model time. For example, S and CUR at line 24
take their respective values at the model time executed at that line of code. At line
30 they take their respective values at option maturity time T.

The model DeltaHedge_Backwards computes the hedging error based on the
analytic solution of the Black-Scholes delta. The error is computed in a back-
wards fashion, such that Pi_CUR always contains the exact amount of money re-
quired for a perfect replication. This is conditioned by setting Pi_CUR = V_CUR!
at the option maturity time (line 28) together with the no-arbitrage theorem
that two portfolios having the same price in the future will have the same price
today.

The backward-in-time style of hedging is facilitated with the ThetaML future op-
erator "!". As such, we are able to fix the future hedging portfolio value to the
option’s discounted future payoffs (Pi_CUR = V_CUR! at line 28), respectively
for all the simulation paths, and iterate backwards in time to arrive at current
hedging portfolio values.

The hedging portfolio is assumed to be rebalanced at each trading day (line 24).
The position taken in the hedging stock is delta, it is computed by calling the
function BlackScholesDelta (line 18 - line 22) implemented in the model
BlackScholesDelta.

The value of the hedging portfolio Pi_CUR is not deterministic and thus has a prob-
ability distribution at time 0. This distribution minus the option value E(V_CUR!)
is the hedging error (line 14). The distribution for the hedging error is shown
in the graph below.

P a g e | 175

We discount to time 0 the processes V_CUR and S so that future cash flows are
always seen in present value terms. The variables S, CUR and V_CUR are process
variables with implicit scenario and time indexes, we therefore write their values
in plural form.

As in the case of forward hedging, the value of the European put E(V_CUR), using
Black-Scholes delta as the hedging strategy simulated backwards in time, is 13.15
with a standard deviation of 0.84 for the hedging error.

P a g e | 176

7.2.3 Variance Minimization by Hedging

Even though theory dictates that financial markets do not allow arbitrage and
that markets are complete, even though this no-arbitrage-and-complete-market
theory has led to various breakthroughs in the previous decades, there is in Thet-
aML a unique technology that lies at the frontline of this derivatives research, by
simply assuming that a real-world model for the underlying hedge instrument ex-
ists. Even though this view appears unconventional, we can obtain optimal hedg-
ing strategies for incomplete markets and in the presence of transaction costs.

Our optimal hedging strategies are computed by the function Beta. The Beta(S,V)
function computes a variance minimal hedge based on the statistical properties
of the underlying S and the instrument to be hedged V.

Our unique Beta function allows using Monte Carlo pricing for many more real-
istic market scenarios other than the basic ones assumed in the Black-Scholes
economy. Moreover, even in a Black-Scholes economy, our Beta function gives the
same results as the Black-Scholes delta. This is illustrated by the following Thet-
aML code examples where the hedge instruments can be single- or multi-dimen-
sional stochastic processes, or single or multiple underlyings.

P a g e | 177

7.2.3.1 Single Dimensional Stochastics

The case of beta hedging with single underlying, the underlying follows a single-
dimensional stochastic process:

 1: model BetaHedge_SingleUnderlying
 2: % This model simulates the optimal hedge of an American put
 3: % option, written on a single underlying stock;
 4: % note that this hedge is variance optimal for any
 5: % underlying process S
 6: import S “Stock prices”
 7: import CUR “Discount factors”
 8: import sigma “Volatility of the stock prices”
 9: import r “Risk-free interest rate”
10: import K “Strike price for the American put option”
11: export Pi_CUR “Hedging portfolio value”
12:
13: T = 1 % time to maturity of the put option
14: n = 252*T % loop length
15:
16: loop n
17: % update the discounted hedging portfolio value
18: Pi_CUR = Pi_CUR!
19: - Beta(S!*CUR!, Pi_CUR!) * (S!*CUR! - S*CUR)
20: % evaluate early exercise decisions
21: if E(Pi_CUR!) < (K – S)*CUR
22: Pi_CUR = (K – S)*CUR
23: end
24: % time passing of T/n time interval
25: theta T/n
26: end
27: % hedging portfolio Pi_CUR has the same value as V_CUR
28: Pi_CUR = V_CUR!
29: % at maturity T, option payoffs discounted to time 0
30: V_CUR = max(K - S,0) * CUR
31:
32: end

P a g e | 178

In the model BetaHedge_SingleUnderlying, the time to maturity of the American
put option T is given as 1 year at line 13, and we assume there are 252 trading
days in one year (line 14).

The model BetaHedge_SingleUnderlying imports the stock prices S and the
discount factors CUR simulated externally in the model S_CUR_Processes in the
Chapter Example of Chapter 3. The two processes S and CUR automatically syn-
chronize in model time with processes in current model. As such, S and CUR take
their respective values at the corresponding model time. For example, S and CUR
at line 19 take their respective values at the model time executed at that line of
code. At line 30 they take their respective values at option maturity time T.

The hedging portfolio Pi_CUR is set up as having the same value as the discount-
ed American put payoffs V_CUR. This is conditioned by setting Pi_CUR = V_CUR!
at the option maturity time T (line 28) together with the no-arbitrage theorem
that two portfolios having the same price in the future should be priced the
same today.

The portfolio Pi_CUR is updated at each T/n passing time interval (theta T/n at
line 25), by investing an amount of Beta(S!*CUR!, Pi_CUR!) in the stock S (line
19). The function Beta(S!*CUR!, Pi_CUR!)computes the beta factor for its two
arguments, where S!*CUR! is the explanatory variable and Pi_CUR! is the depen-
dent variable. Assuming we are now at time t, the Beta(S!*CUR!, Pi_CUR!) func-
tion estimates the relationship between S!*CUR! and Pi_CUR! conditional on the
information at time t, where S!, CUR! and Pi_CUR! take respectively the values of
S, CUR and Pi_CUR at the immediate next model time.

Since the option is American, the hedged portfolio continuation value is com-
pared to the option’s exercise value at each possible exercise date. Depending on
the evaluation result, the hedged portfolio value is accordingly updated (line 21
- line 23).

P a g e | 179

We discount to time 0 the processes V_CUR and S so that future cash flows are
always seen in present value terms. The variables S, CUR, Pi_CUR and V_CUR are
process variables with implicit scenario and time indexes.

P a g e | 180

The case of beta hedging with multiple underlyings, the underlyings follow sin-
gle-dimensional stochastic process:

 1: model BetaHedge_MultipleUnderlyings
 2: % This model simulates the optimal hedge of a European put
 3: % basket option. The option is written on multiple
 4: % underlyings with multiple strike prices; note: this hedge
 5: % is variance optimal for any underlying process S
 6: import S “Stock prices”
 7: import CUR “Discount factors”
 8: import K “Strike prices for the American basket put”
 9: export delta “Hedge position”
10: export Pi_obs “Hedging portfolio value”
11: export P “European put basket option price”
12:
13: %P has the same expected value as Pi_CUR
14:
15: P = E(Pi_CUR!)
16: T = 1 % time to maturity of the basket option
17: n = 252*T % loop length, assuming 252 trading days
18:
19: loop n
20: % we can store the values of Pi_CUR at each time step
21: % in the variable Pi_obs for examinations
22: Pi_obs = Pi_CUR!
23: % array loop, loop through the elements of the arrays
24: % S and delta!; delta! is defined after the array loop
25: loop s, d : S, delta!
26: % update portfolio values for the component stocks
27: Pi_CUR = Pi_CUR! - d * (s!*CUR! - s*CUR)
28: end
29: % computes an array of beta factors
30: delta = Beta(S!*CUR!,Pi_CUR!)
31: % time passing of T/n time interval
32: theta T/n
33: end
34: % Pi_CUR is set equal to V_CUR! at maturity T
35: Pi_CUR = V_CUR!

P a g e | 181

36: % loop through the arrays of stocks S and strikes K, and
37: % assign the discounted payoffs to V_CUR
38: loop s,k : S,K
39: V_CUR = max(V_CUR!, (k - s) * CUR)
40: end
41:
42: V_CUR = 0 % cut-off value of option payoffs
43: delta = 0 % liquidate the stock positions at maturity
44:
45: end

In the model BetaHedge_MultipleUnderlyings, the European put option maturity
T is set to 1 year (line 16), each year is assumed to have 252 trading days (line 17).

The model BetaHedge_MultipleUnderlyings imports the stock prices S and the
discount factors CUR simulated externally. The two processes S and CUR automati-
cally synchronize in model time with other processes in current model. As such,
S and CUR take their respective values at the corresponding model time. For ex-
ample, the processes S and CUR at line 30 take their respective values at the
model time executed at that line of code. At line 38 and line 39 they take their
respective values at the option maturity time T. Note in this model, the stock price
processes S and the strike prices K are arrays.

At time 0, the European put option price P is set up as having the same expected
value of the discounted hedging portfolio Pi_CUR. The values of the discounted
hedging portfolio Pi_CUR are pinned at time T to the discounted payoffs of an
exotic European put option V_CUR at line 35. By setting Pi_CUR = V_CUR! at the
option maturity time T, the no-arbitrage theorem dictates that the two portfolios
Pi_CUR and V_CUR should have the same price today.

The payoffs of the exotic European put option V_CUR are defined by the code block
from line 38 to line 40.

We elaborate more on this payoff feature:

P a g e | 182

The loop … end block loops through the array of strikes and stock prices, and as-
signs to V_CUR a set of vanilla put option payoffs. If we expand the loop, the set of
payoffs look as follows:

V_CUR = max (V_CUR!, (K[1] – S[1]) * CUR)
V_CUR = max (V_CUR!, (K[2] – S[2]) * CUR)
 …

V_CUR = max (V_CUR!, (K[length(K)] – S[length(S)]) * CUR)
V_CUR = 0

where, for easier exposition, we use the square bracket [] to denote array index-
ing, and length() is the length of an array, K[length(K)] for example is the last
array element of K. Since the payoff function uses the future referenced V_CUR (i.e.
V_CUR!), the order of the code evaluation is backward in time. As such, we obtain
first V_CUR = 0 at line 42. Then input this value 0 into the payoff profile V_CUR =
max(0, (K[length(K)] – S[length(S)])*CUR), note that length(K) = length(S)
per the definition of loop in ThetaML. Since this is the payoff value future refer-
enced by the V_CUR! before it, the payoff profile at index length(K)-1 is thus
V_CUR = max(max(0, (K[length(K)]– S[length(S)])*CUR), (K[length(K)-1]

– S[length(S)-1])*CUR). Continuing like this, we have the combined payoff for
the exotic European put option:

V_CUR = max(max(… max(0, (K[length(K)]– S[length(S)])*CUR) … , (K[2]

– S[2])*CUR), (K[1] – S[1])*CUR)

Having fixed the maturity payoffs, the portfolio Pi_CUR is then updated at each
passing time interval T/n (line 27), by investing an amount of d in the compo-
nent stock s. The amount of d is an element of the array delta! who access the
beta factors computed for the set of discounted stocks S!*CUR! in the portfolio
Pi_CUR! (line 30). The array delta! is computed at each time step, starting from
time 0 to time T - (T/n).

P a g e | 183

Expanding the array loop line 25 - line 28, the code block look as follows:

Pi_CUR = Pi_CUR! - Beta[1]*(S[1]!*CUR! – S[1]*CUR)
Pi_CUR = Pi_CUR! - Beta[2]*(S[2]!*CUR! – S[2]*CUR)
…

Pi_CUR = Pi_CUR! - Beta[length(S)] * (S[length(S)]!*CUR! –
S[length(S)]*CUR)

Pi_CUR = Pi_CUR_next

Define m = length(S), denote the portfolio value at the k-th loop as Pi_CUR[k] ,
the above set is put together as follows

Pi_CUR = (… ((Pi_CUR_next - Beta[m]*(S[m]!*CUR! – S[m]*CUR))
- Beta[m-1]*(S[m-1]!*CUR! – S[m-1]*CUR)) …)
- Beta[1]*(S[1]!*CUR! – S[1]*CUR)

where, for easier exposition, we use the square bracket [] to denote array index-
ing. The term Pi_CUR_next equals V_CUR! at line 35. The above representation
for Pi_CUR simply says that the portfolio value Pi_CUR is rebalanced for each stock
by an amount of Beta[k] for the component stock S[k]. The portfolio rebalancing
process starts from time 0 to one step before the option maturity, T – (T/n). At op-
tion maturity T, we liquidate the stocks by setting the array delta = 0 at line 43.
A special note about the future operator “!” in the array loop: the operator “!”
after delta (line 25) and Pi_CUR (line 27) access their respective next value at
the same time step, while the operator “!” after S at line 30 accesses the stocks’
future values at the next time step.

We discount to time 0 the processes V_CUR, Pi_CUR and S so that future cash
flows are always seen in present value terms. The variables S, CUR, Pi_CUR and
V_CUR are process variables with implicit scenario and time indexes.

P a g e | 184

7.2.3.2 Multi-Dimensional Stochastics

The exact same ThetaML Script is applicable to stock prices following higher di-
mensional stochastic processes. The only difference is that the imported stock
price process is multi-dimensional process simulated externally in a simulation
model.

P a g e | 185

7.2.4 Static and Dynamic Hedging

To further illustrate the wide applicability of our Beta function, we provide, among
others, the following code examples for static and dynamic portfolio hedging.
The case of static portfolio hedging:

 1: model Static_hedging
 2: % This model applies our Beta function to static portfolio
 3: % hedging of a Barrier option
 4: import S “Stock prices”
 5: import CUR “Discount factors”
 6: export delta “Hedge position”
 7: export P_obs “Hedged option price”
 8:
 9: % declare delta as a float array of length 20
10: % declare Vt_CUR as a float array of length 20
11: type delta float[20]
12: type Vt_CUR float[20]
13: % store the present values of P_CUR! in the variable
14: % P_obs for examinations of the results
15: P_obs = P_CUR!
16: % compute the beta factors for portfolio hedging
17: delta = Beta(Vt_CUR!, V_CUR!)
18: % loop through the arrays of delta and Vt_CUR
19: loop d, v : delta, Vt_CUR
20: % set up the discounted hedging portfolio P_CUR at time
21: % 0,using the hedging instruments in the array Vt_CUR
22: P_CUR = P_CUR! - d * (v! - E(v!))
23: end
24: % the discounted hedging portfolio P_CUR initially
25: % has the same distribution as the discounted Barrier
26: % option values V_CUR at time 0
27: P_CUR = V_CUR!
28:
29: % the Barrier option to be hedged
30: fork
31: Loop 52

P a g e | 186

32: % one week passes
33: theta 1/52
34: % check whether or not the stock prices S violate
35: % the barrier 120, for all Monte-Carlo paths
36: if S > 120
37: V_CUR = 0
38: end
39: end
40: % at 1 year maturity, the discounted option payoff
41: % is discounted to time 0
42: V_CUR = max(100 - S,0) * CUR
43: end
44:
45: % build up the hedge instruments
46: index = 1
47: loop 5
48: % time passing of 1/5 year
49: theta 1/5
50: % the set of hedging instruments Vt_CUR maturing at
51: % this model time
52: Vt_CUR[index] = max(100 - S, 0) * CUR
53: Vt_CUR[index+1] = max(120 - S, 0) * CUR
54: Vt_CUR[index+2] = max(S - 100, 0) * CUR
55: Vt_CUR[index+3] = max(S - 120, 0) * CUR
56: % update the array index
57: index = index + 4
58: end
59:
60: end

In the model Static_hedging, we define two arrays using the type keyword - delta
and Vt_CUR - to hold respectively the beta factors and the hedging instruments.

The model Static_hedging imports the stock prices S and the discount factors
CUR simulated externally in the model S_CUR_Processes in the Chapter Example
of Chapter 3. The two processes S and CUR automatically synchronize in model
time with processes in current model. As such, S and CUR take their respective

P a g e | 187

values at the corresponding model time. For example, S and CUR at line 42 take
their respectively values at option maturity time 1.

At line 17, the hedge ratios Beta(Vt_CUR!, V_CUR!) are pre-computed condi-
tional on current time information, the variables Vt_CUR! and V_CUR! are respec-
tively values of the discounted hedge instruments and values of the discounted
barrier option at time 0. The discounted hedging portfolio P_CUR adjust its val-
ues using the computed hedge ratios for the respective hedging instruments (line
22). The adjusting process is realized with the following loop block selectively
copied from the model Static_hedging:

19: loop d, v : delta, Vt_CUR
22: P_CUR = P_CUR! - d * (v! - E(v!))
23: end
27: P_CUR = V_CUR!

The above array loop can be expanded as follows:

P_CUR = P_CUR! – delta[1] * (Vt_CUR[1]! - E(Vt_CUR[1]!))
P_CUR = P_CUR! – delta[2] * (Vt_CUR[2]! - E(Vt_CUR[2]!))
 …

P_CUR = P_CUR! – delta[length(delta)] * (Vt_CUR[length(Vt_CUR)]! –
E(Vt_CUR[length(Vt_CUR)]!))

P_CUR = V_CUR!

where length(delta) must equal length(Vt_CUR) per the definition of ar-
ray loop in ThetaML. We have used the square bracket [] to denote array index-
ing, for example, delta[1] means the first array element of the array delta, Vt_
CUR[length(Vt_CUR)] is the last array element of the array Vt_CUR.

Since the discounted hedging portfolio P_CUR is referenced with the future opera-
tor “!”, the evaluation process of P_CUR is backward in time:

P a g e | 188

The discounted portfolio P_CUR initially has the same value distribution as the dis-
counted barrier option (P_CUR = V_CUR! at line 27). Define n = length(delta),
k as the k-th element of the array of hedging instruments, the discounted portfolio
P_CUR at the index element n is:

P_CUR = V_CUR! – delta[n] * (Vt_CUR[n]! - E(Vt_CUR[n]!))

The discounted portfolio P_CUR at index n-1 is:

P_CUR = (V_CUR! – delta[n] * (Vt_CUR[n]! - E(Vt_CUR[n]!)))
 – delta[n-1] * (Vt_CUR[n-1]! - E(Vt_CUR[n-1]!))

Repeating this procedure, the discounted portfolio after looping through all the
elements of the array is represented as:

P_CUR = (… ((V_CUR! – delta[n] * (Vt_CUR[n]! - E(Vt_CUR[n]!)))
 – delta[n-1] * (Vt_CUR[n-1]! - E(Vt_CUR[n-1]!))) …)
 – delta[1] * (Vt_CUR[1]! - E(Vt_CUR[1]!))

Mathematically, this is equivalent to

P_CUR = V_CUR! - ∑n
k=1 delta k (Vt_CUR[k]!-E(Vt_CUR[k]!)),

where P_CUR and V_CUR are respectively the discounted hedging portfolio and
the discounted barrier option, the term Vt_CUR[k] is the k-th element of the ar-
ray of discounted hedging instruments. The term delta k denotes the hedge ratio
for instrument Vt_CUR[k]. After the discounted portfolio is initially hedged with
a delta k amount in the k-th instrument, we hold this position throughout the life-
time of the hedged barrier option.

The Beta(Vt_CUR!, V_CUR!) function at line 17 takes two arguments, the hedging
instruments Vt_CUR! as the explanatory variables and the barrier option value V_

P a g e | 189

CUR! as the dependent variable. Both the two function arguments involve the future
operator “!”, their future values are determined in the following.

The fork … end block from line 30 to line 43 runs the process of the discounted
barrier option V_CUR, the loop … end block from line 47 to line 58 builds the
discounted hedge instruments Vt_CUR. The fork … end statement and the theta
command enable the two processes V_CUR and Vt_CUR run virtually in parallel
in model time. This is as if the second loop … end block (line 47 - line 58) were
implicitly forked.

In the first loop … end block (line 31 to line 39), we check every week (1/52)
whether the stock price is above the barrier or not, if it is, the barrier option is
knocked out; otherwise, the option remains alive. At year 1 (52*(1/52)), we reach
the maturity of the barrier option and assign the discounted payoffs to V_CUR.

In the loop for the hedging instruments (line 47 to line 58), at time 1/5, the first
4 hedging instruments mature and are given their respective discounted payoff
values. After another 1/5 time - at time 2/5, another 4 of the hedging instruments
mature and are assigned their respective discounted payoffs. Continuing this pro-
cedure, at time 1 (5*(1/5)), the last 4 hedging instruments get their respective
discounted payoffs.

We discount to time 0 the processes V_CUR and Vt_CUR so that future cash flows are
always seen in present value terms. The discount factors CUR decay at a constant risk-
free rate r, as such all the variable processes at a certain time point are discounted by
the same discount factor maturing at that time point. The variables S, CUR, Vt_CUR
and V_CUR are process variables with implicit scenario and time indexes.

Computationally, we evaluate first the payoff functions at maturity time 1, then
updating each of the processes according to their respective process features,
continuing this way backwards to arrive their respective values at current time.

P a g e | 190

The case of dynamic portfolio hedging:

 1: model Dynamic_hedging
 2: % This model applies our Beta function to dynamic portfolio
 3: % hedging
 4: import S “Stock prices”
 5: import CUR “Discount factors”
 6: export Pi_obs “Dynamically hedged portfolio values”
 7: export V_obs “Unhedged barrier option prices”
 8:
 9: % store the present values of the barrier option in
10: % V_obs, and store the values of the hedging portfolio
11: % in the variable Pi_obs for examinations of results
12: V_obs = V_CUR!
13: Pi_obs = Pi_CUR!
14:
15: % dynamic portfolio hedging
16: fork
17: loop 252
18: % rebalance the discounted portfolio Pi_CUR
19: Pi_CUR = Pi_CUR! - Beta(S!*CUR!, Pi_CUR!)
20: * (S!*CUR! - S*CUR)
21: % 1 trading day passes
22: theta 1/252
23: end
24: end
25:
26: % barrier option
27: fork
28: loop 52
29: % one week passes
30: theta 1/52
31: % check if the stock prices S violates
32: % the barrier 120
33: if S > 120
34: % if the barrier is violated, the discounted barrier
35: % option V_CUR is knocked out and the discounted
36: % hedging portfolio Pi_CUR has zero values, for the

P a g e | 191

37: % violated simulation paths
38: V_CUR = 0
39: Pi_CUR = 0
40: end
41: end
42: % the discounted hedging portfolio Pi_CUR has the same
43: % distribution as the discounted barrier option V_CUR
44: % at the option maturity time
45: Pi_CUR = V_CUR!
46: V_CUR = max(100 - S,0) * CUR
47: end
48:
49: end

The model Dynamic_hedging is a good example for the use of the fork … end
statement. The body of the model is formed by two fork … end blocks that run
virtually in parallel in model time. The first fork … end block (line 16 - line 24)
runs the process of a discounted hedging portfolio Pi_CUR, the second fork … end
block (line 27 - line 47) runs the process of a barrier option V_CUR and checks
the barriers for the discounted barrier option V_CUR and the discounted hedging
portfolio Pi_CUR.

The model Dynamic_hedging imports the stock prices S and the discount factors
CUR simulated externally in the model S_CUR_Processes in the Chapter Example
of Chapter 3. The two processes S and CUR automatically synchronize in model
time with processes in current model. As such, S and CUR take their respective
values at the corresponding model time. For example, S and CUR at line 46 take
their respective values at option maturity time 1.

In the first fork … end block (line 16 - line 24), the discounted portfolio Pi_CUR
is rebalance at a constant time interval 1/252. The portfolio rebalancing process
is realized with the loop … end loop (line 17 - line 23). In the loop, at each pass-
ing time of 1/252, the discounted portfolio values are updated by the amount of

P a g e | 192

Beta(S!*CUR!, Pi_CUR!) in the underlying stocks S. The Beta function computes
the factor loadings for the discounted stock prices S!*CUR! with respect to the
discounted portfolio values Pi_CUR!, conditional on the information available at
that passing model time.

In the second fork … end block (line 27 - line 47), we check at every 1/52 time
interval whether the stock S has breached the barrier 120 or not, if it has, the
discounted barrier option V_CUR is knocked out and the discounted hedging port-
folio value Pi_CUR is set to 0; this is done for all the Monte-Carlo simulation paths.
At time 1 (52*(1/52)), the barrier option has the discounted payoffs max(100 -
S,0) * CUR (line 46), and the hedging portfolio Pi_CUR gets the same discounted
payoffs (Pi_CUR = V_CUR! at line 45, where V_CUR! takes the value of V_CUR at
line 46).

The variables S, CUR, Pi_CUR and V_CUR are process variables with implicit sce-
nario and time indexes.

The processes V_CUR and S are discounted to time 0 so that we always talk about
future cash flows in present value terms. The discount factors CUR decay at a con-
stant risk-free rate r, as such all the variable processes at a certain time point are
discounted by the same discount factor maturing at that time point.

Computationally, both of the payoff functions at maturity time 1 are evaluated
first, then each of the processes are updated according to their respective process
features. Continuing backwards in time, we arrive at their respective values at
time 0.

P a g e | 193

7.2.5 Transaction Costs

Our unique Beta function also computes optimal hedging strategies in the pres-
ence of transaction costs. We show two such code examples below - one for port-
folio rebalancing at constant time interval and one for portfolio rebalancing only
when the underlying position changes are above a certain barrier.

The case of portfolio rebalancing at constant time interval:

 1: model BetaHedge_TCost_ConstInterval
 2: % This model applies our Beta function to hedge a European
 3: % put option in the presence of transaction cost, the
 4: % portfolio is rebalanced at constant time interval
 5: import S “Stock prices”
 6: import CUR “Discount factors”
 7: import K “Strike price for the European put option”
 8: import T “Time to maturity”
 9: export Pi_CUR “Option value”
10: export Pif_CUR “Hedged option value”
11: export Error “Hedging error”
12: export delta “Hedge position”
13:
14: n = 252 % loop length
15: kappa = 0.01 % level of transaction cost
16: % the forward hedged portfolio Pif_CUR initially has the
17: % same expected value as the discounted backward hedging
18: % portfolio Pi_CUR
19: Pif_CUR = E(Pi_CUR!)
20: delta_old = 0 % old delta, backward hedging
21: delta_old_f = 0 % old delta, forward hedging
22: % initialize the discounted old stock values Sold_CUR to
23: % the discounted current stock values S*CUR
24: Sold_CUR = S*CUR
25:
26: loop n
27: % optimally update the discounted backward-hedging
28: % portfolio Pi_CUR considering transaction costs

P a g e | 194

29: Pi_CUR = Pi_CUR! - delta!*(S!*CUR! - S*CUR)
30: + kappa * abs((delta_old! - delta!)*S*CUR)
31: % limit the position in stock S to [-1, 0] since the
32: % hedged option is a put option
33: delta = min(0, max(-1, Beta(S!*CUR!,Pi_CUR!)))
34: % update delta_old which is computed in the
35: % next model time
36: delta_old = delta!
37: % time passing of T/n time interval
38: theta T/n
39: % if the position taken in the stock S has changed from
40: % the previous one, rebalance the portfolio
41: if (abs(delta - delta_old_f) >= 0.0) & @time < T
42: Pif_CUR = Pif_CUR + delta * (S*CUR – Sold_CUR)
43: – kappa * abs((delta_old_f - delta)*S*CUR)
44: % update the old discounted stock price
45: Sold_CUR = S*CUR
46: % update the old delta
47: delta_old_f = delta
48: end
49: end
50: % at option maturity, for forward hedged portfolio: unwind
51: % the position in stocks, including transaction costs
52: Pif_CUR = Pif_CUR - kappa * abs((delta_old_f - 0)*S*CUR)
53: % liquidate stock positions at option maturity
54: delta = 0
55: % at option maturity, for backward hedging portfolio: set
56: % the hedging portfolio Pi_CUR to the values of discounted
57: % option payoffs V_CUR
58: Pi_CUR = V_CUR!
59: % discounted option maturity payoffs
60: V_CUR = max(K - S,0) * CUR
61: % hedging error
62: Error = V_CUR - Pif_CUR
63:
64: end

In the model BetaHedge_TCost_ConstInterval, the European put option matu-
rity T is imported as an input parameter, each year is assumed to have 252 trading
days (line 14). Transaction cost is a constant kappa at line 15.

P a g e | 195

Hedging in the presence of transaction cost is based on the idea that, at option ma-
turity time, we can fix the hedging portfolio value to the known option maturity
payoff. By the no-arbitrage theorem, two portfolios having the same cash flows in
the future should have the same price today. By pinning the hedging portfolio value
to the option maturity payoff, we are able to hedge the portfolios backwards in time
with an optimal hedge ratio for each portfolio rebalancing date. The optimal hedge
ratio is computed based on the value of the hedging portfolio in the presence of
transaction cost, conditional on the filtration of current stock prices. Continuing
iteratively back to the current time, the so-hedged two portfolios should have about
the same price, depending on the optimality of the hedge ratios.

In ThetaML, the Beta function is thus defined such that it is variance optimal for
almost any underlying process.

The model BetaHedge_TCost_ConstInterval imports the stock prices S and the
discount factors CUR simulated externally in the model S_CUR_Processes in the
Chapter Example of Chapter 3. The two processes S and CUR automatically syn-
chronize in model time with processes in current model. As such, S and CUR take
their respective values at the corresponding model time. For example, S and CUR
at line 29 takes their respective values at the model time executed at that line of
code. At line 60, S and CUR take their respective values at option maturity time T.
The backward hedging portfolio Pi_CUR is set up in order to obtain better esti-
mates for hedge ratios that are computed using the Beta function.

At maturity time T, the backward-hedging portfolio Pi_CUR has the same value
distribution as the discounted European put option payoffs (line 58 - line 60).
Going backwards in time, the portfolio Pi_CUR is dynamically hedged using an
optimal hedge ratio obtained from the Beta(S!*CUR!,Pi_CUR!)function; in the
meantime, the hedging portfolio values are adjusted by an amount of transac-
tion costs at kappa of the changes in stock investments (line 29 - line 30).
The Beta(S!*CUR!,Pi_CUR!) function takes two arguments, the first argument

P a g e | 196

S!*CUR! is the explanatory variables and the second argument Pi_CUR! is the de-
pendent variable. Both of the two function arguments assess their future values
via the future operator “!”. The Beta(S!*CUR!,Pi_CUR!) function computes an
optimal factor loading based on the hedging portfolio value Pi_CUR in the pres-
ence of transaction costs, conditional on the then passing model time.

Line 33 limits the computed Beta values to an interval of -1 to 0, since the hedged
option is a put option. The delta! at line 29 and line 30 accesses the next delta
value computed in line 33. The delta_old! at line 30 accesses the next delta_
old in line 36. As such, the term (delta_old! - delta!) computes changes
between the stock positions taken at the next and current model time.

The hedged option value Pif_CUR is set up initially to have the same expected
value as the backward-hedging portfolio value Pi_CUR (line 19) at time 0. With
time passing, the forward hedged option value Pif_CUR is dynamically updated
with position delta in the underlying S (line 42), only when the position has
changed from the previous portfolio update (line 41). The delta in line 41, line
42 and line 43 is computed in line 33 based on the backward-hedging portfolio
Pi_CUR. As such, the term abs(delta_old_f - delta) computes change(s) of
stock positions taken between previous and current model time. At option matu-
rity, when we liquidate the stock positions, we adjust the forward hedging portfo-
lio Pif_CUR by the corresponding amount of the transaction cost (line 52).

The variables S, CUR, Pi_CUR and Pif_CUR are process variables with implicit sce-
nario and time indexes.

The processes V_CUR and S are discounted to time 0 so that we always talk about
future cash flows in present value terms. The discount factors CUR decay at a con-
stant risk-free rate r, as such all the variable processes at a certain time point are
discounted by the same discount factor maturing at that time point.

P a g e | 197

The case of portfolio rebalancing only when changes in the underlying positions
are above a certain barrier:

 1: model BetaHedge_TCost_PositionBarrier
 2: % This model applies our Beta function to hedge a European
 3: % put option in the presence of transaction cost; the
 4: % portfolio is rebalanced only when the positions in
 5: % underlying hedge instruments change more than some level
 6: import S “Stock prices”
 7: import CUR “Discount factors”
 8: import K “Strike price for the European put”
 9: import T “Time to maturity”
10: export Pi_CUR “Option value”
11: export Pif_CUR “Hedged option value”
12: export Error “Hedging error”
13: export delta “Hedge ratios”
14:
15: n = 252 % loop length
16: kappa = 0.01 % level of transaction cost
17: % the forward hedged portfolio Pif_CUR initially has the
18: % same expected value as the discounted backward hedging
19: % portfolio Pi_CUR
20: Pif_CUR = E(Pi_CUR!)
21: delta_old = 0 % old delta, backward hedging
22: delta_old_f = 0 % old delta, forward hedging
23: % initialize the discounted old stock values Sold_CUR to
24: % the discounted current stock values S*CUR
25: Sold_CUR = S*CUR
26:
27: loop n
28: % optimally update the discounted backward-hedging
29: % portfolio Pi_CUR considering transaction costs
30: Pi_CUR = Pi_CUR! - delta!*(S!*CUR! - S*CUR)
31: + kappa * abs((delta_old! - delta!)*S*CUR)
32: % limit the position in stock S to (-1, 0), since the
33: % hedged option is a put option
34: delta = min(0, max(-1, Beta(S!*CUR!,Pi_CUR!)))
35: % update delta_old which is computed in the

P a g e | 198

36: % next model time
37: delta_old = delta!
38: % time passing of T/n time interval
39: theta T/n
40: % if the position changes in the stock S is above 0.05,
41: % rebalance the portfolio Pif_CUR
42: if (abs(delta - delta_old_f) >= 0.05) & @time < T
43: Pif_CUR = Pif_CUR + delta * (S*CUR – Sold_CUR)
44: – kappa * abs((delta_old_f - delta)*S*CUR)
45: % update the old discounted stock price
46: Sold_CUR = S*CUR
47: % update the old delta
48: delta_old_f = delta
49: end
50: end
51: % at option maturity, for forward hedged portfolio: unwind
52: % the position in stocks, including transaction costs
53: Pif_CUR = Pif_CUR - kappa * abs((delta_old_f - 0)*S*CUR)
54: % liquidate the stock positions at option maturity
55: delta = 0
56: % at option maturity, for backward hedging portfolio: set
57: % the hedging portfolio Pi_CUR to the values of discounted
58: % option payoffs V_CUR
59: Pi_CUR = V_CUR!
60: % discounted option maturity payoffs
61: V_CUR = max(K - S,0) * CUR
62: % hedging error
63: Error = V_CUR - Pif_CUR
64:
65: end

In the model BetaHedge_TCost_PositionBarrier, the European put option ma-
turity T is imported as an input parameter, each year is assumed to have 252 trad-
ing days (line 15). Transaction cost is a constant kappa at line 16.

The model BetaHedge_TCost_PositionBarrier imports the stock prices S and the
discount factors CUR simulated externally in the model S_CUR_Processes in the
Chapter Example of Chapter 3. The two processes S and CUR automatically synchro-

P a g e | 199

nize in model time with processes in current model. As such, S and CUR take their
respective values at the corresponding model time. For example, S and CUR at line
30 take their respective values at the model time executed at that line of code. At
line 61, S and CUR take their respective values at option maturity time T.

The ThetaML code statements are very similar to those in the model BetaHedge_
TCost_ConstInterval. The only difference lies in line 42, where the hedged
portfolio value Pif_CUR is adjusted only when the position changes are above
the level of 0.05. This reduces the hedging frequency and thus transaction costs.
This is more reasonable in cases where the volatilities of the underlying prices
are small.

The backward-hedging portfolio value Pi_CUR is fixed at maturity time T to the
European put option payoff (line 59), then iteratively going backwards in time,
the portfolio Pi_CUR is dynamically hedged using an optimal hedge ratio obtained
from the Beta function; in the meantime, the portfolio values are adjusted by an
amount of transaction costs at kappa of the changes in stock investments (line
30 - line 31).

Line 34 limits the computed Beta values to an interval of -1 to 0 for put option.
The delta! at line 30 and line 31 accesses the next delta value computed in
line 34. The delta_old! at line 31 accesses the next delta_old in line 37. As
such, the term abs(delta_old! - delta!) computes changes in stock positions
between next and the current model time.

The hedged option value Pif_CUR is set up initially to have the same expected
value as the backward-hedging portfolio value Pi_CUR (line 20). With time pass-
ing, the portfolio value Pif_CUR is dynamically updated with position delta in
the underlying S (line 43), only when the position has changed from the previ-
ous update by a factor of 0.05 (line 42). The delta in line 42, line 43, line 44 and
line 48 are computed in line 34. As such, the term abs(delta_old_f - delta)

P a g e | 200

computes change(s) of stock positions between the previous and current one(s).
At option maturity, when we liquidate the stock positions, we adjust the forward
hedging portfolio Pif_CUR by the corresponding amount of the transaction cost
(line 53).

The variables S, CUR, Pi_CUR and Pif_CUR are process variables with implicit sce-
nario and time indexes.

The processes V_CUR and S are discounted to time 0 so that we always talk about
future cash flows in present value terms. The discount factors CUR decay at a con-
stant risk-free rate r, as such all the variable processes at a certain time point are
discounted by the same discount factor maturing at that time point.

This completes our tutorial “Hedging in ThetaML”.

P a g e | 201

8 ThetaML Tips and Tricks

When working with ThetaML, there are various
techniques which can be used to improve the speed
and accuracy of Monte-Carlo simulations with
ThetaML models. This chapter explains the most
important ones.

P a g e | 202

8.1 Nested if Improves Speed

	 Avoid evaluating conditional functions that returns zero

The most costly operation in pricing options is the evaluation of conditional sto-
chastic functions such as E and Beta. The time complexity of such an operation is
at least of order O(n2) with n as the number of Monte-Carlo paths. In many cases,
we can selectively reduce the simulated paths to the most relevant ones before
doing any computations with the conditional functions E and Beta.

As an example, consider the following if … end block:

 if E(V_CUR!) < (K – S)*CUR
 V_CUR = (K – S)*CUR

 end

Since we know in advance that E(V_CUR!) must be greater than zero, we restrict
the whole computations to those simulation paths where (K – S)*CUR is greater
than zero.

 if 0 < (K – S)*CUR
 if E(V_CUR!)< (K – S)*CUR
 V_CUR = (K – S)*CUR

 end
 end

P a g e | 203

8.2 Reducing Variance by Hedging Improves Convergence

	 The Beta function reduces the variance of simulated option prices thus
increases the accuracy of price estimates.

The following two models American and American_hedged have similar runtimes
but the model American_hedged returns option values of higher precision as a
result of using the Beta function.

model American
% Model American simulates prices for an American put option
 import S “Stock prices”
 import CUR “Discount factors”
 import sigma “Volatility”
 import r “Interest rate”
 import K “Strike price”
 export P “Option value”

 % current option value
 P = E(V_CUR!)
 % time to maturity of the option
 T = 1
 % n loops, assuming daily exercise interval and
 % 252 trading days in a year
 n = 252*T
 loop n
 % evaluate optimal exercise conditions, compare estimated
 % discounted hold values E(V_CUR!) with discounted
 % intrinsic values, for all Monte-Carlo paths
 if E(V_CUR!)< (K - S)*CUR
 V_CUR = (K - S)*CUR
 end
 % time passing of T/n
 theta T/n
 end
 % at maturity, option payoffs are discounted to time 0
 V_CUR = max(K - S,0)*CUR
end

P a g e | 204

model American_hedged
% Model American_hedged simulates the optimal hedge of an
% American put option; note that this hedge is variance
% optimal for any underlying process S
 import S “Stock prices”
 import CUR “Discount factors”
 import sigma “Volatility”
 import r “Interest rate”
 import K “Strike price”
 export P “Option value”

 % current option value
 P = E(Pi_CUR!)
 % time to maturity
 T = 1
 %n loops
 n = 252*T
 loop n
 % hedge the discounted portfolio Pi_CUR using Beta function
 Pi_CUR = Pi_CUR! – Beta(S!*CUR!,Pi_CUR)*(S!*CUR! - S*CUR)
 % evaluate optimal exercise conditions, compare estimated
 % discounted hold values E(Pi_CUR!) with discounted
 % intrinsic values, for all Monte-Carlo paths
 if E(Pi_CUR!) < (K – S)*CUR
 Pi_CUR = (K – S)*CUR
 end
 % time passing of T/n
 theta T/n
 end
 % at option maturity, the hedged portfolio has the same value
 % distribution as the discounted option payoffs
 Pi_CUR = V_CUR!
 % at maturity, the option payoff is discounted to time 0
 V_CUR = max(K - S,0)*CUR
end

P a g e | 205

8.3 Adding Control Variables Can Improve Accuracy

	 Using additional information available, we can significantly improve the
numerical accuracies of conditional expected values such as E and Beta

In the model European_S_control, the underlying S is simulated with no drift, as
such we can use its price at time 0 as an estimate of its expected value at time 1.
We can then use this knowledge to compute a better estimate P for the expected
value of V_CUR as follows:

model European_S_control
% Pricing a European put option with S as control variable
 import S “Stock prices”
 import CUR “Discount factors”
 import K “Option strike price”
 export P “Option price”

 % use S as control variable for better price estimates P
 P = V_CUR! - Beta(S_control!,V_CUR!) * (S_control! - S)

 % 1 time unit passes
 theta 1

 % S_control has expected value S
 S_control = S
 % at maturity, the option payoff is discounted to time 0
 % S is already discounted since it is simulated with no drift
 V_CUR = max(K*CUR - S,0)
end

P a g e | 206

We can even go a little further and include other knowledge like the closed-form
solution of a European option price and use it to estimate an American option price:

% Pricing an American put option with a European put option as
% control variable
model American_Vcontrol
 import S “Stock prices”
 import CUR “Discount factors”
 import K “Option strike price”
 import sigma “Volatility”
 import r “Risk-free rate”
 export P “Option price”

 % use European option V_control as control variable
 % V_control has expected value V_ref
 P = V_CUR! - Beta(V_control,V_CUR) * (V_control! - V_ref!)
 % V_ref is computed using the closed form formula for the
 % European put option; the function arguments for myBlsprice
 % are respectively: stock price, strike price, volatility,
 % interest rate, option maturity, and option type ‘call’;
 % the option price V_ref is discounted to time 0 by CUR, this
 % is to be consistent with its simulated counterpart V_control
 V_ref = myBlsprice(S, K, sigma, r, 1, 0)*CUR
 %loop 52 times
 loop 52
 % time passing of one week
 theta 1/52
 % early exercise evaluation: compare the expected discounted
 % hold values E(V_CUR!) with discounted option intrinsic
 % values, for all the Monte-Carlo simulation paths
 if E(V_CUR!) < (K - S)*CUR
 V_CUR = (K - S)*CUR
 end
 end
 % at maturity 1, the control variable V_control has the same
 % discounted payoffs as the American put option V_CUR
 V_control = V_CUR!
 % at maturity 1, the payoff is discounted to time 0
 V_CUR = max(K - S,0)*CUR
end

P a g e | 207

8.5 Avoiding Direct Assignment of Expected Values Im-
proves Accuracy

	We can improve the accuracy of option price estimates by avoiding direct
assignments of the expected values from functions E and Beta

The expected value function E generates approximation errors and should only be
used when a (statistical) expected value is required. For example, in a compound
option, it is advisable not to use the E function for both decisional and computa-
tional steps:

model compound
 ...
 theta 1
 %time 1 outer option payoffs, E(V_inner) is the expected value
 %of the inner option conditional on time 1 information
 V = max(E(V_inner!)- K_outer, 0)

 theta 1
 %time 2 inner option payoffs
 V_inner = max(S - K_inner,0)

end

P a g e | 208

Instead, the decisional and computational parts should be separated as follows:

model compound

 ...

 theta 1
 % at time 1, evaluate the outer option payoffs
 % E(V_inner!) is the expected value of the inner option,
 % conditional on time 1 information
 if E(V_inner!) - K_outer > 0

 V = V_inner! - K_outer
 else

 V = 0
 end

 theta 1
 % at time 2, inner option payoffs
 V_inner = max(S - K_inner,0)

end

P a g e | 209

8.6 Keep Export Variables Unique

	 Export variables serve to report (return) results of a model. If they are also
used to store temporary results, the exported results will get clogged. This
situation can be avoided by keeping assignments to export variables unique.

In the following code, the first instance of x is a temporary result that gets incor-
rectly reported:

model test
 export x % results of x get clogged
 ...

 x = x/(n-1) % x has the temporary results

 x = x + S/n

 ...

end

Storing the intermediate results in a temporary variable keeps the reporting of x
unique:

x_tmp = x % store x in a temporary variable x_tmp

x_tmp = x_tmp/(n-1) % doing computations with x_tmp

x_tmp = x_tmp + S/n % doing computations with x_tmp

x = x_tmp % assign x_tmp to x and report x

P a g e | 211

References

Dirnstorfer, S., 2004, On the Representation of Trading Strategies and Financial
Portfolios, Intelligent Finance - Convergence of Financial Mathematics with Tech-
nical and Fundamental Analysis, Proc. 1st Int. Workshop on Intelligent Finance
(IWIF-I), Melbourne, Australia, ISBN 187685118X, page 131 - 143.

Dirnstorfer, S., 2006, Mulitscale Calculus with Applications in Quantitative Fi-
nance, PhD Thesis, TU München, Germany, Fakultät Für Informatik.

Dirnstorfer, S., A. J. Grau, 2008, Accelerated Option Pricing in Multiple Scenarios,
Computational Engineering, Finance, and Science (cs.CE). Source: http://arxiv.
org/abs/0807.5120

Dirnstorfer, S., A. J. Grau, Computer Aided Finance: Another Journey in the Quest
for the Holy Grail of Financial Engineering, Technical Article, WILMOTT maga-
zine, November 2008, page 68 - 73.

Dirnstorfer, S., A. J. Grau, and R. Zagst, 2006, Moving Window Asian Options:
Sparse Grids and Least-Squares Monte Carlo, Working Paper.

Grau, A. J., 2008, Applications of Least-Squares Regressions to Pricing and
Hedging of Financial Derivatives, Dissertation, Technische Universität
München. Source: http://nbnresolving. de/urn/resolver.pl?urn:nbn:de:bvb:91-
diss-20071212-635889-1-9

Thetaris: When Upstream Is Faster, Interview Article, WILMOTT magazine, Sep-
tember 2008, page 18 - 19.

Internet Resources: http://wiki.thetaris.com/index.php/Main_Page

P a g e | 213

Index
.
.thetagram, 28
.thetaml, 28
.thetas, 28

@
@dt, 25, 70-71, 95, 110-111 112, 114, 117, 118
@matlab, 83, 85, 94, 98-99, 127, 151
@noBackward, 137-138
@noExternalFunction, 137-138
@noExternalModule, 137-138
@noFork, 138
@noInfLoop, 138
@noRegression, 137
@notheta, 137-138
@scenarioIndex, 26, 48
@scenarioSize, 26, 48
@time, 26, 48, 70, 114, 170, 173, 194

A
American option, 159, 164, 206
array, 66-68, 73-74, 109, 129, 146, 185
array loop, 73, 180, 183, 187
Asian option, 94
assert, 133-135, 139
assignments, 53, 207, 209
Assignments, 53, 145

B
Bermudean Option, 157

P a g e | 214

Beta function, 149, 153, 164, 166, 176, 185, 190, 192-193, 195, 203-204
Beta(), 25, 48, 108, 137
Black-Scholes delta, 167-174
Boolean, 47, 88, 126, 143

C
call, 47, 76-77, 79-81, 85, 94, 98-99, 148, 170, 173
chronological, 12, 14-17, 19, 24, 120
Comments, 52
complex stepping object, 82, 85, 87
compound option, 161, 207
computational order, 12, 14, 15, 158, 163
configuration file, 28, 39, 149-150
constraints, 132, 134-136, 139

D
data type, 49, 141, 143
Delta Hedging, 167
Dimension filter, 32
discount factor, 95, 99-100, 112, 114, 116-119, 154, 192
Domain Specific Language, 12, 43-44

E
E(), 16-17, 25, 48, 105-106, 123, 137
editor, 37-38, 40
Enum, 47, 128, 143
European option, 155, 206
export, 46-51, 55, 76-81, 85, 88, 94, 99, 110, 129, 136, 142, 146, 148, 150

F
files, 28, 29, 127, 149

P a g e | 215

float, 67-68, 129, 185
fork … end, 17-18, 20-21, 24, 58-62, 72, 77, 99-100, 112-113
future operator !, 14-16, 24, 51, 81, 101, 102-104, 106, 108, 120, 122-123, 156,

183, 188-189, 196

G
Geometric Brownian motion, 38, 91, 115-116

H
hedging, 166-167, 170-178, 180-181, 185-200

I
if … else … end, 63
implements, 132-136
implicit fork … end, 77
import, 46-51, 55, 76-81, 85, 88, 94, 99, 126, 127-128, 133-134, 139, 142, 150
indexOf(), 73, 146
interface, 132-136, 138-139
interfaces, 18, 131, 134

L
language constraints, 137
Least Squares Monte Carlo, 17
length(), 68, 109, 149
load, 149-150
loop … end, 25, 69-70, 72, 100-101, 112-113, 182, 189, 191
loop inf … end, 24, 71-72, 112-114
LSMC. See Least Squares Monte Carlo

M
Markov states, 92, 98

P a g e | 216

Matlab, 82, 151
Matlab function, 82-84
Matlab stepping object, 85-87
model, 46, 50-52
Model arguments, 46
model file, 28-29, 36, 39-40
model time, 16-21, 24, 26, 30-31, 54-56, 58-59, 61, 77, 82, 95, 101, 111, 113, 120,

156-157, 160
multiple arrays, 74

N
naming convention, 47

O
Open in Excel, 32-33
Open in Matlab, 32

P
portfolio hedging, 166, 185, 190
post conditions, 12, 18
Pre- and post-conditions, 12, 18
pre- and post-processing, 141
process variables, 101, 118, 156
project, 35-36
Project Explorer, 28, 35-36

R
run, 149-150
Runtime parameters, 29, 40

P a g e | 217

S
Sample Project, 28
stepping function, 82, 85, 90, 94, 96, 98, 101
submodel, 76

T
theta, 16, 20-21, 24, 54-56, 58-62, 70-72, 95, 106, 110, 112-113
Theta Orchestrator, 128
Theta Suite, 27
Theta Suite Result Explorer, 30-32, 47
Thetagram, 10-11, 28
ThetaML, 9-19
ThetaML Configurator, 28, 32
Time-step filter, 31
Tips and Tricks, 201
transaction costs, 193
type, 49, 67-68, 126-129, 185
type extraction, 125, 143

V
Value assertions, 139
variables, 46-48, 120, 125
variance optimal hedge, 164

W
workflow, 142, 150

P a g e | 218

ThetaML is a modeling language developed by Thetaris. It describes financial
products in a simple and general way. ThetaML introduces tools for intuitive mod-
el design, powerful analyses and automated productions. It focuses on financial
product structural features and abstracts these structural features from model
processes and numerical details.

As domain specific language, ThetaML bundles together functional and procedur-
al programming styles. Important features of this language include:

	Domain specific language for financial contract design

	 Programming in chronological order and computational order

	 Implicit handling of scenario- and time- indices

	 Virtual multi-threading of paralleled models

	 Built-in conditional expectations of financial variables

	 Pre- and post-conditions on models to ensure model correctness

This book documents the language syntax of ThetaML. It starts with a summary
of the language features, followed by a chapter on ThetaML language syntax. The
ThetaML type system, interfaces and workflows are detailed in later chapters.
There are many code examples to help understand the language commands and
functions. Two tutorials further apply ThetaML to pricing and hedging financial
contracts. The final chapter offers many tips and tricks for more efficient use of
ThetaML in financial settings.

