

Any IT application requires testing before a successful Go-Live. The automation of these tasks allows

the inexpensive repetition and continuous monitoring of functionalities and has become common-

place. It is an integral part of modern Continuous Integration and Continuous Delivery (CI/CD). As

costs for implementation and adaptation are the driving factors in deciding whether to automate

testing, this will be the focus of this paper. By hiring 12 test automation professionals where each of

them has the same task but uses their respective favorite tool, we can benchmark these tools. Assum-

ing that all tools find the correct issues, we will evaluate the tools based on the time it takes to create

and adapt tests.

Check that the old functionality still
works

Test Automation is done for quality assurance in
software development. As software changes
throughout the releases, it is prudent not just to
test the new features, but ensure that old func-
tionalities still operate as designed. As this would
result in monotonous repetition of tests for each
release, ideally for each function of the applica-
tion, automation quickly becomes an economic
necessity.

The main entry barriers are the costs not just of
implementing an automated test, but also to

maintain it throughout the releases. If managed
poorly, maintenance efforts can explode making
test automation appear as a concurrent develop-
ment to the main application itself.

Find two changes of a website

For our test, we asked our 12 test automation pro-
fessionals to automate tasks on our website. The
website is based on WordPress using the Ele-
mentor plugin. We required each automation pro-
fessional to have at least 3 years of experience in
their respective technology.

Testup: Game Changer for Automated Testing © 2021 by Testup 2

The task consisted of checking 37 Buttons, 22
Links, 2 Hover Effects, 1 Pop-up, 24 Headers, fill-
ing 5 Form Fields and checking 1 Signup-Result
on multiple pages of a website.

After finishing the test automation, we changed
the website in two places covered by the previous
tests. We removed one header and a button, to
check if this would be detected. We also made an
additional modification to the website, which is
not covered by the tests, to see how it would af-
fect the automation.

Then we let the testers run the tests, to see if the
two changes would be detected and how they
would cope with the third one.

Afterwards we asked them to update their tests,
assuming that the changes were intentional, so
that the test-cases would now pass if run again.

Here an example of a hidden orange Button:

One of the pages of the use case. (Before the
change.)

The same page as above with intended change:
Orange button is hidden. (After the change.)

Automation tools

To select the automation tools we benchmark, we
look at commonly used frameworks. A survey
which frameworks are used in practice is provided
by reflect.run.

We focus on

• Cypress + BDD: A relatively new Open Source
framework with a focus on Google Chrome.

• Ranorex Studio (Scripted/Recorded): A com-
mercially available Software package capable
of automating Windows as well as Web Appli-
cations.

• Selenium (+ Python/Java): The cross browser
standard for test automation by providing an
API to the browser interactions.

• TestCafe (+ Python/Java): Simplifies the us-
age of the browser interactions by eliminating
selenium boiler plate code.

• Testup.io: A cloud service in which you record
tests by interacting with your application
through VNC.

Not all tool delivered correct issues

Each of the applications should find at least the
two changes which were covered by the test case.
The third and additional change should not be
found. But, due to different implementation de-
tails, some of the implementations detected arti-
facts, additionally to the intended changes, so
called false positives: One of the Selenium Python
implementations returned non-visible changes in
a Title text. Another implementation detected a
change of a button, which was again not visible.
Only Testup.io detected the two intended
changes and did not report any false positives.

Testup: Game Changer for Automated Testing © 2021 by Testup 3

Benchmark results

Test Creation

The creation took our automation professionals
the following average times:

Cypress – BDD 5 Hours

Ranorex Recorded 3 Hours

Ranorex Scripted 8 Hours

Selenium Java 11 Hours 30 Min

Selenium Python 13 Hours 30 Min

TestCafe 16 Hours

Testup.io 10 Minutes

Visualizing the same data as above, we see that
Testup.io is 77x faster than current best practices
for test implementation.

Test Modification

Then we went on to measure the time it took, to
update the respective test-cases:

Cypress – BDD 1 Hour 30 Min

Python-Java 1 Hour 30 Min

Python-Selenium 1 Hour 35 Min

Ranorex 30 Min

Ranorex Scripted 1 Hour

TestCafe 1 Hour 45 Min

Testup.io 6 Min

Testup.io is 14.6x faster for test maintenance than
Selenium Python.

77,1

4,5

2,7

1,7

1,2

1,0

0,8

 - 20,0 40,0 60,0 80,0

Testup.io

Ranorex

Ranorex Scripted

Cypress-BDD

Selenium-Java

Selenium-Python

TestCafe

Implementation Speed
relative to Selenium Python

14,6

3,2

1,6

1,1

1,1

1,0

0,9

 - 5,0 10,0 15,0

Testup.io

Ranorex

Ranorex Scripted

Cypress-BDD

Selenium-Java

Selenium-Python

TestCafe

Maintenance Speed
relative to Selenium Python

http://testup.io/

Testup: Game Changer for Automated Testing © 2021 by Testup 4

Testup.io is an order of magnitudes
faster than the other tools. How is
that possible?

Test automation is a task which closely emulates
user behavior. Using a programming framework,
this task requires intricate knowledge of the
browser, especially the internal data structures of
the application like the Websites DOM and JavaS-
cript. On the other hand mimicking the user inter-
actions based on image recognition allows to au-
tomate tests without this internal knowledge.
Testup.io is the only application following this
path consistently.

Ranorex is the only tool in the set of tools we con-
sidered in this benchmark which allows test crea-
tion and test maintenance by capturing user inter-
actions. But, checking if the website is in the cor-
rect state still requires internal knowledge like
checking if an xpath expression is available in
DOM. Instead, Testup.io is based purely on visual
checks. It loads the website and displays it, while
clicks and checks are performed based on image
recognition. Thus, defining a check is significantly
faster than in Ranorex. A user can create test-
cases without any programming knowledge by
simply clicking through as they would in a manual
test run.

At the same time, as Testup.io is limited to what
a user sees visually, it cannot inspect or check hid-
den states easily. For these kinds of checks, a
Testup.io user would record test steps to open
the browser’s developer console and perform the
check there. This would be as slow as the tradi-
tional code based approach. But access to the de-
veloper’s console is possible in Testup.io in con-
trast to most competitors like selenium and cy-
press cannot.

Savings by Introducing Testup.io
are Significant

Benchmarking the new Testup.io with state of the
art tools for automated end-2-end testing results
is a significant edge for Testup.io. Test creation
and Test maintenance are an order of magnitude
faster with Testup.io than with Cypress, Ranorex,
Selenium or TestCafe. Testup.io removes the two
main cost hurdles for test-automation, as both
creation and adaptation can be done quickly and
with ease.

Please visit us:
www.testup.io

Or contact us at:
info@testup.io

