

Where we started

Testing has a bad reputation among developers,
because it is often associated with dull and repet-
itive activities. Testing is associated with little
room for creativity. Any deviation from a given
procedure may trigger an unintended response or
spoil the test result. Nobody really enjoys such
tasks.

This document offers a quick overview how we at
Thetaris automated a variety of tests in our pro-
jects. The main goal was to free developers from
repetitive tasks and improve developer productiv-
ity. To achieve this goal, we made intensive use of
available tools. In some places we added our own
slant of solutions. Recent technologies from fields
as diverse as image recognition, visualization and
artificial intelligence allowed us to come up with
some new ways for automating tests.

Our mantra for the test automation consisted of
three don’ts that we wanted to avoid:

• Don’t waste time between failure and fix

• Don’t waste time finding the most suitable
developer for the fix

• Don’t waste time setting up new test cases

For our testing framework this had three clear
consequences for the technical design:

• Feedback on failing tests must be fast, such
that the cause of the failure can be easily
linked to the component changed.

• The location of the failing component must
be reported as precisely as possible.

• The test description must be low in redun-
dancy and be simple to adjust for changed
behavior and new features.

In order to achieve these goals, we had to accept
our nature of failing humans. Whenever we did fail
it was not enough to search and correct the error
at hand. For every bug we fixed we also had to
anticipate the next failure. We had to make it eas-
ier to find the error the next time and automate
the procedures necessary for finding the bug.

Testing pipeline

Fast feedback on test results can only be achieved
if tests start automatically at predefined triggers.
We ran the following tests in an automated and
regular fashion. They are ordered by fast and iso-
lated to slow and integrated:

• Unit tests: Fast feedback, but simple and iso-
lated test cases

Insights from a successful test automation project

Fighting the repetition

Fighting the repetition: Insights from a successful test automation project © by Thetaris GmbH 2

• Backend tests: Extensive coverage of func-
tions Mostly regression testing, because
server responses are hard to interpret

• Automated UI tests: Full coverage end to
end, but fragile dependency on UI changes
and often unclear location of responsibilities

• Acceptance tests: Full coverage, aesthetic re-
quirements, fitness in real or close to real user
scenarios

The tests were deployed in three different stages
of deployment. The first stage ran a branched ver-
sion of the source code, before it can be merged
into the main branch. The second stage was auto-
matically deployed, once a new feature was unit
tested and merged. Two types of tests worked on
the integration stage: Backend tests and auto-
mated ui tests. In the third stage everything is de-
ployed in a near production setup. Everything
that could not be tested automatically is left to
this stage. Changes in design and user flows al-
ways land here.

Unit testing

Unit testing gives the fastest feedback on chang-
ing behavior of code. Unit tests must be written
to run fast – few minutes at most – and be re-
peated with every commit. Various tools support
this process. Bitbucket testing pipelines (see
screenshot) can ensure that tests are run with

every commit. The responsible committer and the
changed code lines are directly linked to the error
report. The effectiveness of unit tests can be mon-
itored with test coverage tools. We used So-
narQube and Istanbul to identify functionalities
that were not sufficiently covered by unit tests.
Manual commit reviews – pull requests – also
helped us to ensure that test coverage stayed
high.

Useful service: test pipelines in Bitbucket. Every
commit is labeled with the result status of the unit
test.

Fighting the repetition: Insights from a successful test automation project © by Thetaris GmbH 3

Backend tests

The backends of our systems provide services
through http restful requests. This is more or less
the standard setup for any modern web enabled
application. For simple requests it may be suffi-
cient to test them with tools like postman or curl.

We found that thorough backend tests could only
succeed with a more complex set of requests. We
wanted to check the system in complex situations
with sequences of requests that are not easy to
create and verify manually.

We chose R markdown sheets to specify the tests.
Markdown allowed us to create human readable
test reports that contain all the code necessary to
reproduce the error. We used visualizations to re-
port the current behavior. This can be extremely
useful for a human to analyze the nature of the
error and save valuable debugging time.

Markdown sheets offered the following benefits:

• A human readable test report is generated.

• All code is contained and easily accessible to
reproduce the error.

• Visualization of test data helps to understand
the current behavior and saves debugging
time.

• Checks of the validity constraints are easy to
define in a language specialized on data anal-
ysis.

UI Frontend tests

For UI test automation we had to train our testing
software to interact with our application. Stand-
ard solutions like Selenium and Appium can be
used to simulate the actual interaction, i.e. per-
form a click or a swipe on a selected element.
However, we still had to specify the actual inter-
action sequence. There we had to face three chal-
lenges:

• Selecting the relevant regions of interaction is
fragile. Buttons can change in layout, size and
position depending on the device. They often
change from version to version and tests
need to keep up.

• Structuring the code for low redundancy is
important. A generic change of one interac-
tion pattern can be one line of code in the
original source. Tests must be equally struc-
tured. Otherwise, tests become hard to main-
tain.

• Running the test on target devices must be
automated. Cloud services provide simple in-
terfaces for testing a large number of devices,
operating systems and system setups.

Screenshot of a test case defined in markdown (background) and the rendered report (foreground).

Fighting the repetition: Insights from a successful test automation project © by Thetaris GmbH 4

Graphical element selection

We used two different location strategies for in-
teraction elements on the screen. One was based
on resource identifiers that are programmed into
the source code. The other strategy is based
purely on the visual representation. The graphical
approach comes closest to how a human would
interact with the software. For a test automation
this requires the image detection to be sufficiently
“smart” and cope with visual changes of shape,
color or position of the interactive element.

We found that state of the art image recognition
algorithms are very powerful. They can detect im-
ages across a range of variations in size and posi-
tion. The major remaining task is the training. For
this purpose, we wrote our own frontend that al-
lowed us to label interaction elements. The image
detection algorithm was sufficiently smart to de-
tect the interaction element in different resolu-
tions and layouts. Whenever a breaking change in
layout occurred the element must be selected in
the screenshot and relabeled.

We have developed our own web application for
maintaining the training set of graphical assets.
The design goals of the image classification
frontend were:

• Fast and intuitive identification of relevant im-
age elements

• Collection of relevant properties that allow
the image to be identified in new layouts

• Precise reporting of failures

• Fast correction of image location strategies in
case of breaking changes

• Low redundancy to minimize efforts after de-
sign changes

Page object pattern

The Page Object Model is the industry standard
for test implementation. It leads to low redun-
dancy in test code and is adopted throughout the
industry. The approach works well with various el-
ement location strategies and keeps redundan-
cies low.

We found that the graphical location strategy is
preferable in situations where design is more or
less stable and interaction with developers is
costly. Element location-based on resource iden-
tifiers is preferable is situations where visual ap-
pearance of objects is highly dependent on con-
text and developer time is available to add test
hooks for relevant elements.

The page object pattern separates the code base
into three parts:

• Test steps,
a programmatic description of steps as they
would be performed by a user

• Page objects,
a class hierarchy with methods for each transi-
tion between states. This part models the ap-
plication states and defines the location strat-
egy for interaction elements.

• Shared utilities,
all algorithms required for reporting, access
to the image classification data and image
detection.

Screenshot of the image classification front end that we used to maintain the list of graphical assets. On the
left you can see a screen shot of the application in the current state. On the right you see the list classified
interaction elements

Fighting the repetition: Insights from a successful test automation project © by Thetaris GmbH 5

This design pattern has been found to lead effec-

tive test code with low redundancy. Changes in

the application behavior can be covered with iso-

lated changes in the page object model. A proper

typed class structure of the page model also en-

sures that the test is consistent, i.e. that the oper-

ation performed in an application state is possi-

ble.

Example:

Assume a simple graph of application states and

transitions below. For simplicity only a subsection

of the application states and transitions are

shown.

A simple code pattern the entry state “In-
dexPage” is shown in a simplified version below.
The page object provides the method “login”,
which locates the interaction elements and re-
turns a new state object named “MainPage”. In
this structure the code editor always knows what
operations are possible in the current state. Re-
factoring tools of modern editors can be use effi-
ciently.

The page object model was first described in:

Improving test suites maintainability with the
page object pattern: An industrial case study M
Leotta, D Clerissi, F Ricca, C Spadaro - 2013 IEEE
Sixth International Conference on Software 2013

Device testing

Running tests on large device numbers has be-
come much less of a problem than it used to be.
Cloud providers such as BrowserStack provide
standard interfaces for Selenium and Appium
based tests.

Screenshot of BrowserStack web interface. The
properties of the selected device are shown next
to a video of the application screen during the
test.

Acceptance tests

The final test in our pipeline was the acceptance
test. This is where software developers finally pre-
sent a new feature to the users or the business.
This aspect is much more a human resource man-
agement task than it is technical.

We used the ticket man-
agement software JIRA
to track the state of fea-
tures and bugs. This for-
mal tracking of states al-
lowed us to keep all stake
holders informed about
the process. Additionally,
we could measure our
performance by the time
from specification to ac-
ceptance or by the num-
ber of issues resolved.

We found the following states to be useful for suc-
cessful test operation:

• Ready for development (Bug confirmed)

• Development in progress

• Peer review
(manual code review, git pull request)

class IndexPage extends PageObject {

 MainPage login(String username, String password) {

 findElementByImage(getImage(“login-field”)).sendKeys(username)

 findElementByImage(getImage(“password-field”)).sendKeys(password)

 findElementByImage(getImage(“login-button”).click()

 return new MainPage();

 }

}

Fighting the repetition: Insights from a successful test automation project © by Thetaris GmbH 6

• Testing in integration environment
 (TEST DEV = Unit tests passed, ready for in-
tegration testing)

• Testing on staging environment
(TEST ALPHA = regression and integration
tests passed, ready for acceptance testing)

• DONE
Version number is supplied to the ticket

Conclusion

After some initial pain we could confirm: test au-
tomation significantly increased the stability of
our software. We started with unit tests almost at
the same time as we started coding. Later stages
of test requirements were discovered successively

as the complexity of our software grew. The
backend tests were added first. They are relatively
easy to set up and covered the entire functionality
of the service. Frontend tests came later as inter-
action pattern stabilized. Designing frontend
tests with a high level of maintainability was diffi-
cult and still is ongoing effort. The procedures
around ticket management and test planning are
also ongoing effort, because it essentially requires
human effort to keep the system up-to-date.

This concludes this rather quick overview of our
test setup. Some of the presented material is
standard knowledge. Some of the presented
tools were custom made. We hope that our in-
sights can be useful for other projects. Don’t hes-
itate to contact us for further details. We will be
more than happy to help where we can.

Please visit us:

www.thetaris.com

Or contact us at:

Leopoldstr. 244
D-80807 München

info@thetaris.com

+49 89 208 039 480

Screenshot ow the entire JIRA workflow containing the specification and design phase. Workflow
transitions were associated with accepted or rejected paths.

